Примером теплообмена излучением является

Содержание
  1. Примеры теплопередачи в природе, в быту
  2. Примеры передачи тепловой энергии
  3. Тепло – это движение
  4. Что такое проводимость?
  5. Факторы проводимости
  6. Примеры проводимости
  7. Конвекция
  8. Излучение
  9. Примеры теплопередачи в природе, быту, технике
  10. Испарение
  11. Виды теплообмена
  12. Теплопроводность
  13. Конвекция
  14. Теплообмен излучением
  15. 12 примеров тепловой энергии в повседневной жизни
  16. 12. Солнечная энергия
  17. 11. Тающий лед
  18. 10. Топливные элементы
  19. 9. Геотермальная энергия
  20. 8. Тепловая энергия в океане
  21. 7. Солнечная плита
  22. 6. Потирая руку
  23. 5. Тепловой двигатель
  24. 4. Горящая свеча
  25. 3. Электрические тостеры
  26. 2. Современные системы отопления дома
  27. 1. Процессоры и другие электрические компоненты
  28. Теплообмен – основные виды в физике, суть и примеры
  29. Виды теплообмена и способы передачи тепла
  30. Теплопроводность
  31. Виды теплопередачи: теплопроводность, конвекция, излучение – FIZI4KA
  32. Часть 1
  33. Ответы

Примеры теплопередачи в природе, в быту

Примером теплообмена излучением является

Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.

Примеры теплопередачи можно встретить повсюду – в природе, технике и повседневной жизни.

Примеры передачи тепловой энергии

Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?

Вот некоторые из них:

  • Газовая или электрическая плита и, например, сковорода для жарки яиц.
  • Автомобильные виды топлива, такие как бензин, являются источниками тепловой энергии для двигателя.
  • Включенный тостер превращает кусок хлеба в тост. Это связано с лучистой тепловой энергией тоста, который вытягивает влагу из хлеба и делает его хрустящим.
  • Горячая чашка дымящегося какао согревает руки.
  • Любое пламя, начиная от спичечного пламени и заканчивая массивными лесными пожарами.
  • Когда лед помещают в стакан с водой, тепловая энергия из воды его плавит, то есть сама вода является источником энергии.
  • Система радиатора или отопления в доме обеспечивает тепло в течение долгих и холодных зимних месяцев.
  • Обычные печи являются источниками конвекции, в результате чего помещенный в них пищевой продукт нагревается, и запускается процесс приготовления.
  • Примеры теплопередачи можно наблюдать и в своем собственном теле, взяв в руку кусочек льда.
  • Тепловая энергия есть даже внутри у кошки, которая может согреть колени хозяина.

Тепло – это движение

Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними.

Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Факторы проводимости

Хорошая или плохая проводимость зависит от нескольких факторов:

  • Вид и качество материала, из которого сделаны предметы.
  • Площадь поверхности двух объектов, находящихся в контакте.
  • Разница температур между двумя объектами.
  • Толщина и размер предметов.

В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.

Примеры проводимости

Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками.

Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух.

Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.

Конвекция

Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности.

Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине.

Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.

Излучение

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия.

Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня.

Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.

Излучение – это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо.

Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос.

Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.

Примеры теплопередачи в природе, быту, технике

Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.

Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения.

Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла.

Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.

Испарение

Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться.

Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом.

В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.

Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.

  • Проводимость – это передача тепла через вещество при непосредственном контакте атомов или молекул.
  • Конвекция – это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
  • Излучение – это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
  • Испарение – это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром.
  • Парниковые газы – это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории – это водяной пар и углекислый газ.
  • Возобновляемые источники энергии – это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
  • Теплопроводность – это скорость, с которой материал передает тепловую энергию через себя.
  • Тепловое равновесие – это состояние, в котором все части системы находятся в одинаковом температурном режиме.

Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо.

Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды.

Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.

Источник: https://FB.ru/article/303040/primeryi-teploperedachi-v-prirode-v-byitu

Виды теплообмена

Примером теплообмена излучением является

Определение 1

Теплообменом называют процесс теплопереноса, который протекает самопроизвольно, причиной его является неоднородное температурное поле в пространстве.

Определение 2

Температурным полем называют систему значений температуры в рассматриваемый момент времени для всех точек пространства.

Уравнение поля температур в общем виде записывают как:

$T=F(x,y,z,\tau),$

где $T$ – температура; $x,y,z$ – координаты; $\tau$ – время.

Если поле температур не изменяется с течением времени, то оно считается стационарным.

Выделяют три вида теплообмена:

  1. теплопроводность;
  2. конвекция (конвективный обмен теплом);
  3. излучение (теплообмен при излучении).

Теплопроводность

Определение 3

Теплопроводностью называют теплоперенос, который осуществляют молекулы и атомы вещества при хаотическом (тепловом) их движении.

Допустим, что вдоль оси Z в веществе имеется градиент температуры. Тогда в этой среде появляется поток тепла, который удовлетворяет уравнению:

$ q=-\kappa \frac{dT}{dz}S (1)$, где:

  • Курсовая работа 470 руб.
  • Реферат 220 руб.
  • Контрольная работа 250 руб.
  • $q$ – поток тепла сквозь поверхность $S$, которая перпендикулярна оси $Z$;
  • $\frac{dT}{dz}$ – проекция температурного градиента на ось $Z$;
  • $\kappa$ – теплопроводность (коэффициент, зависящий от свойств вещества).

Знак минус в уравнении (1) обозначает то, что поток тепла происходит в направлении уменьшения температуры, то есть получается, сто знаки потока тепла и градиента температуры противоположные.

Замечание 1

Выражение (1) называют уравнением Фурье.

Поток тепла направлен нормально к изотермической поверхности. Его положительное направление аналогично направлению наибольшего убывания температуры.

Теплопроводность $\kappa$ численно равна количеству теплоты, проходящей за единичное время сквозь единицу изотермической поверхности, если градиент температуры равен одному кельвину на метр.

Чем больше $\kappa$, тем больше возможность среды к проведению тепла.

Теплопроводность зависит от:

  • температуры у твердых тел;
  • температуры, давления у жидкостей и газов.

У металлов теплопроводность уменьшается при увеличении температуры (исключение составляет алюминий).

Теплопроводность металлов изменяется от 2,3 до 420 Вт/(мК).

  1. У диэлектриков $\kappa$ с ростом температуры увеличивается. Это связано со структурой вещества, которое не является монолитом. На теплопроводность пористых материалов оказывает влияние влажность. При увеличении влажности растет теплопроводность.
  2. Для газов при увеличении температуры теплопроводность увеличивается, при этом у данных веществ теплопроводность почти не зависит от давления.
  3. У жидкостей при увеличении температуры $\kappa$ уменьшается (исключение – вода). Для воды при увеличении температуры от 0 до $1500C$ $\kappa$ растет, при дальнейшем увеличении температуры $\kappa$ уменьшается.

Конвекция

Определение 4

Конвективным теплообменом (конвекцией) называют перенос тепла, при относительном перемещении макроскопических частей жидкостей или жидкостей по отношению к твердым телам.

На практике конвекция сопровождается переносом тепла молекулами, а иногда и лучистым теплообменом.

Практически значимой является конвекция:

  • жидкости и поверхности твердого тела;
  • газа и поверхности жидкости.

Выделяют два вида конвекции:

  • свободную (естественную);
  • вынужденную.

При свободной конвекции сила движения вызвана градиентом плотности жидкости в том месте, где она контактирует с поверхностью тела, обладающего температурой отличной от температуры вдали от него.

Свободная конвекция вызывается действием неоднородного поля внешних массовых сил (поля гравитации, инерции, электромагнитного поля). В связи с разными плотностями возникают архимедовы силы. Подобная конвекция идет в сосуде с жидкостью, которую нагревают при помощи спирали находящейся в ней.

Вынужденная конвенция идет при воздействии внешней поверхностной движущей силы, приложенной на границе системы, или однородного поля массовых сил, приложенных внутри жидкости.

В этом случае происходит процесс обтекания жидкостью поверхности с более высокой (низкой) температурой, чем температура самой жидкости.

Поскольку при вынужденной конвекции скорость перемещения жидкости выше, чем при свободной конвекции, следовательно, при том же изменении температур, предается большее количество теплоты. Увеличение потока тепла связывают с необходимостью расходования энергии, затрачиваемой на перемещение жидкости.

Конвективный перенос тепла имеется везде:

  • в атмосфере Земли;
  • в водах морей и океанов;
  • в процессе обмена теплом с окружающей средой человека и животного;
  • в технике в тепловых двигателях, котлах, печах, холодильниках и т.д.

Плотность потока тепла в процессе передачи тепла пропорциональна изменению температуры между жидкостью и поверхностью тела:

$q=\alpha|T_1-T_2 |(2),$

где $\alpha$ – коэффициент теплообмена.

Коэффициент теплообмена зависит от:

  • поля действующих сил (типа конвекции);
  • режима течения жидкости (ламинарное течение или турбулентное);
  • скорости перемещения жидкости;
  • геометрии твердого тела;
  • физических параметров жидкости, например, теплопроводности, теплоемкости, плотности, вязкости.

Теплообмен излучением

Определение 5

Перенос теплоты при помощи электромагнитного поля называют теплообменом излучением.

Тепловое излучение (лучистый теплообмен) является сложным процессом, в котором преобразование энергии происходит два раза:

  • тепловая энергия переходит в энергию электромагнитных волн;
  • движение волн;
  • поглощение электромагнитных волн веществом или телом.

Процесс излучения происходит в виде испускания (поглощения) фотонов.

При излучении электромагнитное поле уносит от источника излучения энергию. Плотность потока энергии данного поля характеризуют при помощи вектора Пойнтинга.

Излучение связано с температурой. При увеличении температуры растет внутренняя энергия тела, следовательно, увеличивается интенсивность излучения.

Кроме этого излучение зависит от вещества, состояния поверхности тела. Для газов излучение связано с толщиной излучающего слоя и давления.

Многие твердые тела излучают все длины волн. Чистые металлы и газы способны излучать энергию определенных интервалов длин волн (селективное излучение).

Источник: https://spravochnick.ru/fizika/vidy_teploobmena/

12 примеров тепловой энергии в повседневной жизни

Примером теплообмена излучением является

Тепловая энергия относится к энергии, которой обладает объект в результате движения частиц внутри объекта. Это внутренняя кинетическая энергия объекта, которая исходит от случайных движений молекул и атомов объекта.

В то время как молекулы и атомы, составляющие материю, постоянно движутся, когда объект нагревается, повышение температуры заставляет эти частицы двигаться быстрее и сталкиваться друг с другом. Чем быстрее движутся эти частицы, тем выше тепловая энергия объекта.

Она может быть записана математически как произведение постоянной Больцмана (k B) и абсолютной температуры (T).

Тепловая энергия = k B T

Термин “тепловая энергия” может также применяться к количеству передаваемого тепла или энергии, переносимой тепловым потоком.

Тепловая энергия (или термическая энергия) может передаваться от одного тела другому через три процесса –

  • Проводимость: это наиболее распространенная форма теплопередачи, которая происходит через физический контакт: передача внутренней энергии за счет микроскопических столкновений частиц и движения электронов внутри тела.
  • Конвекция: представляет собой передачу тепла из одной области в другую в результате движения жидкостей, например, жидкостей и газов.
  • Излучение – это передача энергии в виде частиц или волн через пространство или среду. Чем горячее объект, тем больше он будет излучать тепловой энергии.

Чтобы лучше объяснить это явление, мы собрали некоторые из лучших примеров тепловой энергии, которые вы видите в повседневной жизни.

12. Солнечная энергия

Тип теплопередачи: Излучение

Солнце – это почти идеальная сфера горячей плазмы, которая преобразует водород в гелий посредством миллиардов химических реакций, которые в конечном итоге производят интенсивное количество тепла.

Вместо того, чтобы находиться рядом с Солнцем, тепло излучается вдаль от звезды и в космос. Небольшая часть этой энергии (тепла) достигает Земли в виде света. В основном она содержит инфракрасный, видимый и ультрафиолетовый свет. Передача тепловой энергии таким образом называется тепловым излучением.

В то время как часть тепловой энергии проникает в атмосферу Земли и достигает земли, часть ее блокируется облаками или отражается от других объектов. Солнечный свет, достигающий поверхности Земли, нагревает ее.

По данным Университета Орегона, вся Земля получает в среднем 164 Ватта на квадратный метр в течение суток. Это означает, что вся планета получает 84 тераватта энергии.

11. Тающий лед

Тип теплопередачи: Конвекция

Тепловая энергия всегда течет из регионов с более высокой температурой в регионы с более низкой температурой. Например, когда вы добавляете к напитку кубики льда, тепло переходит из жидкости в кубики льда.

Температура жидкости падает по мере того, как тепло переходит от напитка к льду. Тепло продолжает перемещаться в самую холодную область напитка до тех пор, пока не достигнет равновесия. Потеря тепла приводит к падению температуры напитка.

10. Топливные элементы

Топливный элемент, который принимает водород и кислород в качестве входных данных

Теплопередача: зависит от типа топливного элемента

Топливные элементы – это электрохимические устройства, которые преобразуют химическую энергию топлива и окислителя в электрическую энергию. При работе топливного элемента значительная часть входной энергии используется для выработки электрической энергии, а оставшаяся часть преобразуется в тепловую энергию в зависимости от типа топливного элемента.

Тепло, получаемое в ходе этого процесса, используется для повышения энергоэффективности. Теоретически топливные элементы являются гораздо более энергоэффективными, чем обычные процессы: если отработанное тепло улавливается в когенерационной схеме, эффективность может достигать 90%.

9. Геотермальная энергия

Тип теплопередачи: мантийная конвекция

Геотермальная энергия – это тепло, получаемое в недрах Земли. Оно содержится в жидкостях и породах под земной корой и может быть найдено глубоко в горячей расплавленной породе Земли – магме.

Она образуется в результате радиоактивного распада материалов и непрерывной потери тепла от формирования планеты. Температура и давление на границе ядра и мантии могут достигать более 4000°C и 139 ГПа, в результате чего некоторые породы расплавляются, а твердая мантия ведет себя пластически.

Это приводит к тому, что части мантии конвектируются вверх (так как расплавленная порода легче, чем окружающие твердые породы). Пар и/или вода переносят геотермальную энергию на поверхность планеты, откуда она может быть использована для охлаждения и обогрева, или может быть использована для производства чистого электричества.

8. Тепловая энергия в океане

Тип теплопередачи: Конвекция и Проводимость

На протяжении десятилетий океаны поглощали более 9/10 избыточного тепла атмосферы от выбросов парниковых газов. Согласно исследованию, океан нагревается со скоростью 0,5-1 ватт энергии на квадратный метр в течение последних десяти лет.

Океаны обладают невероятным потенциалом для хранения тепловой энергии. Поскольку их поверхности подвергаются воздействию прямых солнечных лучей в течение длительных периодов времени, существует огромная разница между температурами мелководных и глубоководных морских районов.

Эта разница температур может быть использована для запуска теплового двигателя и выработки электроэнергии. Этот тип преобразования энергии, известный как преобразование тепловой энергии океана, может работать непрерывно и может поддерживать различные побочные отрасли.

7. Солнечная плита

Тип теплопередачи: излучение и проводимость

Солнечная плита – это низкотехнологичное, недорогое устройство, использующее энергию прямых солнечных лучей для нагрева, приготовления или пастеризации напитков и других пищевых материалов. В солнечный день она может достигать температуры до 400°C.

Все солнечные плиты работают по трем основным принципам:

  • Концентрат солнечного света : устройство имеет зеркальную поверхность для концентрации солнечного света в небольшой зоне для приготовления пищи.
  • Преобразование световой энергии в тепловую энергию . Когда свет падает на материал приемника (кастрюлю), он преобразует свет в тепло, и это мы называем проводимостью.
  • Ловушка тепловой энергии : стеклянная крышка изолирует воздух внутри плиты от наружного воздуха, сводя к минимуму конвекцию (потери тепла).

6. Потирая руку

Тип теплопередачи: Проводимость

Когда вы потираете руки, трение превращает механическую энергию в тепловую. Механическая энергия относится к движению ваших рук.

Поскольку трение происходит за счет электромагнитного притяжения между заряженными частицами на двух соприкасающихся поверхностях, трение рук друг о друга приводит к обмену электромагнитной энергией между молекулами наших рук. Это приводит к тепловому возбуждению молекул наших рук, которые в конечном итоге вырабатывают энергию в виде тепла.

5. Тепловой двигатель

Тип теплопередачи: Конвекция

Тепловой двигатель преобразует тепловую энергию в механическую энергию, которую затем можно использовать для выполнения механической работы. Двигатель забирает энергию из тепла (по сравнению с окружающей средой) и превращает ее в движение.

В зависимости от типа двигателя применяются разные процессы, такие как использование энергии ядерных процессов для выработки тепла (уран) или воспламенение топлива в результате сгорания (уголь или бензин). Во всех процессах цель одна и та же: преобразовать тепло в работу.

Ежедневные примеры тепловых двигателей включают паровоз, двигатель внутреннего сгорания и тепловую электростанцию. Все они приводятся в действие расширением нагретых газов.

4. Горящая свеча

Тип теплопередачи: Проводимость, Конвекция, Излучение

Свечи делают свет, производя тепло. Они преобразуют химическую энергию в тепло. Химическая реакция называется сгоранием, при котором воск свечи вступает в реакцию с кислородом на воздухе и образует бесцветный газ, называемый углекислым газом, вместе с небольшим количеством пара.

Пар образуется в синей части пламени, где воск горит чисто с большим количеством кислорода. Но поскольку ни один воск не горит идеально, они также производят немного дыма (аэрозоль) в яркой, желтой части пламени.

На протяжении всего процесса фитиль поглощает воск и горит, чтобы произвести свет и тепловую энергию.

3. Электрические тостеры

Тип теплопередачи: тепловое излучение

Электрический тостер забирает электрическую энергию и очень эффективно преобразует ее в тепло. Он состоит из рядов тонких проволок (нитей), которые расположены достаточно широко друг от друга, чтобы поджарить всю поверхность хлеба.

Когда электричество течет по проводу, энергия передается от одного конца к другому. Эта энергия переносится электронами. На протяжении всего процесса электроны сталкиваются друг с другом и с атомами в металлической проволоке, выделяя тепло. Чем больше электрический ток и чем тоньше провод, тем больше происходит столкновений и выделяется больше тепла.

2. Современные системы отопления дома

Тип теплопередачи: Конвекция

Два распространенных типа отопительных систем, установленных в зданиях, – это системы отопления теплым воздухом и горячей водой. Первая использует тепловую энергию для нагрева воздуха, а затем циркулирует по системе воздуховодов и регистров. Теплый воздух выдувается из воздуховодов и циркулирует по помещениям, вытесняя холодный воздух.

Второй использует тепловую энергию для нагрева воды, а затем прокачивает ее по всему зданию в системе труб и радиаторов. Горячий радиатор излучает тепловую энергию в окружающий воздух. Затем теплый воздух движется по помещениям конвекционными потоками.

1. Процессоры и другие электрические компоненты

Тип теплопередачи: Конвекция и Проводимость

Процессор, графический процессор и система на чипе рассеивают энергию в виде тепла за счет сопротивления в электронных схемах. Графические процессоры в ноутбуках/настольных компьютерах потребляют и рассеивают значительно больше энергии, чем мобильные процессоры из-за их более высокой сложности и скорости.

Для поддержания оптимальной температуры микропроцессоров используются различные типы систем охлаждения. Например, обычная настольная система охлаждения ЦП предназначена для рассеивания до 90 Вт тепла без превышения максимальной температуры соединения для ЦП настольного компьютера.

Источник: https://new-science.ru/12-primerov-teplovoj-energii-v-povsednevnoj-zhizni/

Теплообмен – основные виды в физике, суть и примеры

Примером теплообмена излучением является

Передача тепла или теплообмен это процесс распространения внутренней энергии в пространстве с разными температурами.

Теплопроводность это способность веществ и тел проводить энергию (тепло) от частей с высокой температурой к частям с более низкой. Такая способность существует за счет движения частиц. Энергия может передаваться между телами и внутри одного тела. Нагревая в пламени один конец гвоздя, мы рискуем обжечься о другой его конец, не находящийся в пламени.

В начале развития науки о свойствах тел и веществ считалось, что тепло передается путем перетекания «теплорода» между телами. Позже, с развитием физики, теплопроводность получила объяснение взаимодействием частиц вещества. Электроны в нагреваемом над огнем участке гвоздя движутся активнее и через столкновения отдают тепло медленным электронам в части, которая не подвергается нагреванию.

Виды теплообмена и способы передачи тепла

В физике выделяют несколько видов теплообмена:

  1. Теплопроводность – свойство материалов передавать через свой объем поток тепла путем обмена энергией движения частиц.

  2. Конвекция – перенос тепла, осуществляемый перемещением неравномерно прогретых участков среды (газа, жидкости) в пространстве.

  3. Излучение – в данном случае перенос тепла в вакууме или газовой среде осуществляется электромагнитными волнами.

Рассмотрим сущность и назначение каждого из видов теплообмена.

Теплопроводность

В большинстве случаев виды теплообмена тесно связаны и проходят одновременно. Конвекция всегда дополняется теплопроводностью, так как при движении объема среды всегда имеется взаимодействие частиц с разными температурами. Такой процесс имеет название конвективного теплообмена. 

Примером такого типа теплообмена является остывание горячего чая, налитого в холодную металлическую кружку. Отдача тепла может сопровождаться его излучением, тогда в переносе теплоты участвуют все три вида: теплопроводность, конвекция, тепловое излучение.

Рассмотрим более подробно теплопроводность.

Этот вид теплообмена присущ твердым телам, но присутствует так же в жидкостях и газах. В твердых телах теплопроводность является основным видом теплообмена и напрямую зависима от природы вещества, его плотности, химического состава, влажности, температуры.

Разные тела и вещества имеют разную теплопроводность. Количественным показателем теплопроводности служит коэффициент теплопроводности, он обозначается буквой λ (лямбда). Чем выше плотность, влажность и температура тела, тем больше λ.

Проведение тепла происходит за счет взаимодействий между частицами. Конечной целью процесса будет выравнивание внутренней температуры по всему телу. Теплопроводность жидкостей меньше, чем у твердых тел, у газов – меньше, чем у жидкостей. Причиной является большое расстояние между молекулами в жидкостях, особенно в газах. 

Низкая теплопроводность воздуха издавна используется при изготовлении двойных оконных рам. Теплопроводность воздуха гораздо ниже теплопроводности стекла. Воздушная прослойка межу стеклами защищает от зимней стужи.

Плохая теплопроводность, появившаяся в процессе эволюции в качестве защиты от критических температур, у живых организмов. Шерсть, пух, волосы, жир обладают очень низкой теплопроводностью. Именно поэтому мы не мерзнем зимой в теплых носках, песцы могут спать на снегу, а моржи выживают в условиях Арктики за счет жировой прослойки.

В таблице приведены примеры материалов, веществ и сред с наименьшей и наибольшей теплопроводностью.

Таблица 1

Исходя из данных, приведенных в таблице, можно сделать некоторые выводы:

  1. В вакууме тепло не проводится. Передача тепла в вакууме может происходить с помощью излучения. Таким способом тепло Солнца доходит до нашей планеты.

  2. Материал с наивысшей теплопроводностью называется графен, который активно используется в наноэлектронике.

  3. Металлы тоже достаточно теплопроводные. Известно, как быстро нагревается металлическая ложка в горячем супе.

  4. Строительные материалы обладают низкой теплопроводностью, что и обуславливает их использование для возведения теплых и надежных жилищ.

С понятием теплопроводности тесно связано понятие теплоемкости.


Теплоемкостью называют количество тепла, которое поглотило тело (вещество), чтобы его температура повысилась на 1 градус. Действительно, для повышения температуры металлического стержня на 1 градус, необходимо, чтобы он обладал теплопроводностью для равномерного нагревания всего объёма.

Знания о теплопроводности веществ и материалов необходимы в строительстве, промышленности, быту. Степень теплопроводности материала обуславливает его применение в той или иной сфере. Разработка и поиск новых веществ с уникальными теплоизоляционными свойствами – важнейшая задача современной науки.

Виды теплопередачи: теплопроводность, конвекция, излучение – FIZI4KA

Примером теплообмена излучением является

ОГЭ 2018 по физике ›

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества.

Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее.

Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения.

Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах.

Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается.

На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д.

Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха.

Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к.

плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле.

Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

  • Примеры заданий
  • Ответы

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции2) излучения и конвекции3) теплопроводности

4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах2) только в жидкостях3) только в газах и жидкостях

4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности2) только с помощью конвекции3) только с помощью излучения

4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность2) только конвекция3) излучение и теплопроводность

4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность2) только конвекция3) только излучение

4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность2) конвекция и теплопроводность3) излучение и теплопроводность

4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона2) железобетона3) силикатного кирпича

4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической2) в пластмассовой3) одновременно

4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.

4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.

3) В процессе передачи энергии давление воздуха в коробке увеличивалось.4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.

5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.

3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.

5) Стекло обладает лучшей теплопроводностью, чем металл.

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/vidy-teploperedachi-teploprovodnost-konvekcija-izluchenie.html

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: