Последствия мутаций для клетки и организма

Содержание
  1. Генные мутации: виды, причины и примеры
  2. Виды мутаций
  3. Причины возникновения мутаций
  4. Мутагены
  5. Примеры генных мутаций у людей
  6. Мутации в биологии – причины появления, классификация и роль в эволюции
  7. Связь с процессами в ДНК
  8. Модели мутагенеза
  9. Принятая классификация
  10. Последствия для организма
  11. Роль в эволюции
  12. Почему COVID-19 смертельно опасна, но далеко не для всех?
  13. Интерфероны и аутоантитела
  14. Смотрите в галерее 15 фактов о новом коронавирусе:
  15. Почему страдают мужчины
  16. Новый подход к лечению
  17. Мутации
  18. Генные мутации
  19. Геномные мутации
  20. Соматические мутации
  21. Что, если бы…?
  22. Спортивный ген
  23. Невероятно крепкие кости
  24. Низкий холестерин
  25. Еще больше кофе
  26. Мощные вкусовые рецепторы
  27. Иммунитет к боли
  28. Рентгеновское зрение
  29. Устойчивость к набору веса
  30. Двойное количество мышц
  31. 3.7. Вредное влияние мутагенов на генетический аппарат клетки. Наследственные болезни
  32. Мутагены —
  33. Общие свойства мутагенов:
  34. Методы генетики человека.
  35. Тематические задания

Генные мутации: виды, причины и примеры

Последствия мутаций для клетки и организма

Определённая последовательность ДНК хранит наследственную информацию, которая может меняться (искажаться) в течение жизни. Такие изменения называются мутациями. Существует несколько видов мутаций, затрагивающих разные участки генетического материала.

Виды мутаций

Генные мутации. Изменения одного гена. Нуклеотиды, составляющие ген, могут «выпадать», меняться местами, заменять А на Т. Причинами становятся ошибки репликации ДНК.

Хромосомные мутации. Затрагивают участки хромосом или целые хромосомы, меняют структуру, форму. Происходят при кроссинговере – перекрёсте гомологичных хромосом. Существует несколько видов хромосомных мутаций:

  • делеция – потеря участка хромосомы;
  • дупликация – удвоение хромосомного участка;
  • дефишенси – потеря концевого участка хромосомы;
  • инверсия – поворот хромосомного участка на 180° (если содержит центромеру – перицентрическая инверсия, не содержит – парацентрическая);
  • инсерция – вставка лишнего хромосомного участка;
  • транслокация – перемещение участка хромосомы на другое место

Геномные мутации. Связаны с изменением числа хромосом внутри генома. Часто происходят при ошибочном выстраивании веретена деления в мейозе. В результате хромосомы неправильно распределяются по дочерним клеткам: одна клетка приобретает в два раза больше хромосом, чем вторая. В зависимости от количества хромосом в клетке различают:

  • полиплоидию – кратное, но неправильное количество хромосом (например, 24 вместо 12);
  • анеуплоидию – некратное количество хромосом (одна лишняя или недостающая).

Цитоплазматические. Нарушения в ДНК митохондрий или пластид. Опасными являются мутации в материнской митохондрии половой клетки. Такие нарушения приводят к митохондриальным заболеваниям

Соматические мутации. Мутации в неполовых клетках. По наследству при половом размножении не передаются. Могут передаваться при почковании и вегетативном размножении.

Причины возникновения мутаций

По причинам возникновения различают спонтанные и индуцированные мутации.

  • Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р: процессов репликации, репарации и рекомбинации ДНК. Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы. В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.
  • Индуцированные мутации возникают под действием мутагенов.

Мутагены

Мутагены – это разнообразные факторы, которые повышают частоту мутаций. Различают несколько классов мутагенов:

  • Физические мутагены: ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.
  • Химические мутагены: аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.
  • Биологические мутагены: чистая ДНК, вирусы, антивирусные вакцины.
  • Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.

Примеры генных мутаций у людей

  1. Прогерия. Прогерией принято считать одним из самых редких генетических дефектов. Проявляется данная мутация в преждевременном старении организма. Большая часть больных погибает, не достигнув тринадцатилетнего возраста, и немногим удается сохранить жизнь до двадцати лет. Данная болезнь развивает инсульты и болезни сердца, и именно поэтому, чаще всего, причиной смерти является сердечный приступ или инсульт.
  2. Синдром на Юнера Тана (СЮТ). Данный синдром специфичен тем, что подверженные ему передвигаются на четвереньках. Обычно люди СЮТ используют самую простую, примитивную речь и страдают врожденной мозговой недостаточностью.
  3. Гипертрихоз. Так же имеет название “синдром оборотня” или же — ”синдром Абрамса”. Данное явление прослеживается и документируется со времен Средневековья. Люди, подверженные гипертрихозу отличаются количеством волос на теле, превышающим нормы, особенно это распространяется на лицо, уши и плечи.
  4. Тяжелый комбинированный иммунодефицит. Подверженные данному заболеванию уже при рождении лишены эффективной иммунной системы, которой обладает среднестатистический человек. Дэвид Веттер, благодаря которому в 1976 году данная болезнь получила известность, скончался в возрасте тринадцати лет, после неудачной попытки хирургического вмешательства с целью укрепления иммунитета.
  5. Синдром Марфана. Заболевание встречается довольно часто, и сопровождается непропорциональному развитию конечностей, чрезмерной подвижностью суставов. Гораздо реже встречается отклонение выраженное срастанием ребер, следствием чего является или выпирание, или западание грудной клетки. Частой проблемой подверженных донному синдрому является искривление позвоночника.

Источник: https://rew-med.info/gennye-mutacii-vidy-prichiny-i-primery/

Мутации в биологии – причины появления, классификация и роль в эволюции

Последствия мутаций для клетки и организма

Геномы животных и человека относительно стабильны, что сохраняет видовую структуру и возможность нормального развития. Для поддержания этого процесса в клетках работают репарационные системы, они исправляют нарушения в цепи ДНК.

Но если бы изменения вообще не могли сохраняться, то живые организмы не приспособились бы к новым условиям обитания. Процесс эволюции остановился бы. Большое значение для создания должного уровня наследственной изменчивости имеют мутации.

Термин впервые встречается в работе де Фриза «Мутационная теория». В этом труде ученый выявил прерывистые скачкообразные изменения в цепи ДНК. Он выделил основные особенности мутации:

  • формы константы;
  • возможность вторичного возникновения;
  • разделение на полезные и вредные;
  • зависимость от количества исследованных видов.

Основа мутации — это изменения ДНК или хромосомы, передающиеся по наследству. Изменчивость универсальна — она наблюдается у животных, людей, растений, бактерий, вирусов.

https://www.youtube.com/watch?v=I-sYnAiaSB4

Существует два типа мутаций — индуцированные и спонтанные.

В первом случае изменения возникают из-за наследственности, а у предков они появлялись из-за неблагоприятных условий окружающей среды или в результате экспериментов.

Спонтанные зарождаются самопроизвольно в течение всей жизни даже при нормальных условиях обитания. Они встречаются с довольно маленькой частотой на нуклеотид за клеточную генерацию.

Связь с процессами в ДНК

Мутации возникают периодически из-за процессов, которые осуществляются в клетках живых организмов. Основные из них:

  • репликация;
  • рекомбинация;
  • репарация.

При репликации происходят спонтанные изменения нуклеотидов. К примеру, при дезаминировании цитониза в структуру ДНК напротив гуанина включается урацил, то есть вместо канонической пары Ц-Г образуется У-Г. В новую цепь добавляется аденин, появляется У-А, а после следующей репликации — Т-А. В этом случае наблюдается транзиция — так называют точечную замену одного пиримидина или пурина другим.

Если мутация связана с рекомбинацией, то она образована на основе неравного кроссинговера. Это происходит только в тех случаях, когда хромосома содержит сразу несколько дуплицированных генных копий, которые сохранили похожую нуклеотидную последовательность. В итоге в одной рекомбинантной хромосоме происходит делеция, а в другой — дупликация.

Часто можно встретить спонтанные повреждения цепи ДНК. Их можно устранить путем удаления ошибочного участка и внедрения на его место нового, правильного. Мутации проявляются, когда репарационный механизм не может справиться с повреждениями или просто не работает.

Если нарушения появились в генах, которые генерируют белки, то они приводят к увеличению или снижению числа других мутирующих частиц.

Модели мутагенеза

Ученые пытаются обосновать природу и особенности появления мутаций. Сегодня в исследованиях используется полимеразная модель, но есть и иные виды.

Характеристика основной модели базируется на единственной причине образования отклонений — случайных ошибках ДНК-полимеразы. Биологи Уотсон и Крик предложили еще одну модель — таутомерную.

Они считали мутацию обыкновенным физико-химическим явлением.

Полимеразную модель впервые выстроил Бреслер. Он предположил, что единственная причина мутаций — это ошибки ДНК-полимераз. В цепи они иногда встраивают напротив фотодимеров некомплементарные нуклеотиды. На основе этих утверждений было создано А-правило. Оно звучит так: ДНК-полимераза добавляет аденины напротив поврежденных участков.

Таутомерная модель основывается на работах других ученых. По мнению Крика и Уотсона, основания ДНК-структуры при неблагоприятных условиях переходят в неканонические виды, которые изменяют характер их спаривания.

Кристаллы нуклеиновых кислот ученые облучали ультрафиолетом и выявили редкие таутомерные соединения цитозина.

Этот опыт повторялся неоднократно, но все же аргументы и эксперименты Уотсона с Криком многие биологи ставили под сомнение.

Ученый Полтев вместе с другими авторами определил ещё одну модель мутагенеза. Он выявил молекулярный механизм, позволяющий распознать пары оснований нуклеиновых кислот с помощью полимеразы. В итоге выяснилось, что отклонения в ДНК вызваны дезаминированием 5-метилцитозином, а это приводит к транзиции от цитозина к тимину.

Принятая классификация

По разным параметрам выделяют определенные классификации мутаций. Ученый Меллер выделял их по особенностям изменения генов на аморфные, гипоморфные и антиморфные. При первых синтезируется меньше белка, вторые характеризуются полной потерей генной функции, а при третьих изменяется признак отклонения. Но современная классификация отличается. Мутации бывают разными:

  • геномными;
  • хромосомными;
  • генными.

Геномные делятся на полиплоидизацию, то есть образование клеток с двумя и более наборами хромосом, и анеуплоидию — изменение их количества.

При хромосомных мутациях перестраиваются отдельные участки цепи.

Тогда можно наблюдать потерю или удвоение генов, изменение сегментов в структурной таблице ДНК, перенос части генетического материала с одной клетки на другую. Иногда объединяются целые хромосомы.

На генном уровне изменения не так заметны, как при других видах мутации, но встречаются такие отклонения чаще. Обычно происходят делеции, вставки или замены нуклеотидов, дупликации и инверсии других частей цепи. Если изменяется только одна составляющая, то говорят о точечном виде. По характеру действия гена мутанта выделяют еще три вида отклонений:

  • физиологические;
  • морфологические;
  • биохимические.

Первый тип понижает жизнеспособность организма, приводит к серьезным болезням и даже к летальному исходу. Примерами можно назвать гемофилию у человека, дыхательные функции у дрожжей, хлорофилльные мутации у растений.

Морфологические отклонения заставляют изменяться органы, затормаживают рост. В результате получаются карликовые растения и коротконогие животные, люди с брахидактилией. Биохимические мутации нарушают синтез веществ из-за отсутствия необходимого фермента. Организмы, страдающие от этого вида, могут жить только в той среде, где есть подобное вещество.

Также разделяют мутации в биологии и медицине на соматические и генеративные. Первые не наследуются организмами, поэтому не имеют никакой ценности для эволюции. Вторые начинают появляться на этапе развития клеток половой системы. Чем раньше они разовьются, тем больше вероятность того, что отклонения передадутся потомству.

Практически все мутации являются рецессивными. Нарушения в ДНК считаются вредными, а подобный характер позволяет им сохраняться в гетерозиготном состоянии. Проявляются они только в случаях, когда благотворно влияют на организм.

Последствия для организма

Обычно мутации отрицательно сказываются на многоклеточном организме. Они приводят к отмиранию клеток — апоптозу. Если внутренние и внешние защитные механизмы не смогли обнаружить отклонение, то ген получат все потомки, что полностью изменит функционирование пораженных частей.

Мутации в соматических клетках часто приводят к образованию злокачественных опухолей. Так возникают фибромы, наросты на мягких тканях, онкология. Нарушения в половых структурах вызывают изменения у организмов-потомков.

Если условия проживания стабильны или изменяются практически незаметно, то у большинства существ генотип стремится к оптимальному уровню. Мутации в этом случае нарушают функции организма, снижают его иммунитет и способность приспосабливаться к новой окружающей среде. Но в редких случаях свойства отклонений оказываются полезными — они позволяют человеку или животному быстрее адаптироваться.

Роль в эволюции

Мутация считается хорошим фактором при эволюционном отборе. Если условия существенно изменились, то вредные ранее отклонения могут стать полезными.

При изучении березовых пядениц в Англии XIX века ученые обнаружили меланистов — темноокрашенных бабочек. Такую расцветку они приобрели из-за мутации гена.

Светлые крылья позволяют им прятаться на стволах деревьев, покрытых лишайниками.

Из-за развития промышленности и выбросов загрязнений в атмосферу березки покрылись копотью и стали темными. Мутировавшие бабочки легко прятались на их стволах от птиц, ведь в районах, над которыми держится смог, хищники активно выедали светлых пядениц.

Если мутация касается пассивных структур ДНК, то в фенотипе она не проявляется. Но ее можно обнаружить с помощью генного анализа. Так как отклонения обычно происходят по естественным причинам, то, согласно исследованиям, их частота должна быть почти постоянной.

Это используется при анализе филогении, с помощью которой изучают родственные связи таксонов живых организмов. Мутации в «молчащих» генах используются в качестве молекулярных часов.

Организация этой теории исходит из того, что отклонения ДНК в большинстве нейтральны, а накапливаются они независимо от естественного отбора. Изменения в течение длительного времени остаются постоянными.

Значительная роль, какую играют мутации в процессе эволюции, заключается в том, какие именно клетки ДНК-структуры они поражают. Оказывают свое влияние на этот процесс и условия окружающей среды.

Источник: https://nauka.club/biologiya/mutatsii.html

Почему COVID-19 смертельно опасна, но далеко не для всех?

Последствия мутаций для клетки и организма

Depositphotos.com

Случаи, когда от COVID-19 умирают молодые и здоровые люди, в то время как у других, не менее молодых и здоровых людей болезнь протекает в легкой форме или вообще бессимптомно, — далеко не редкость.

Почему кто-то почти не замечает инфекцию, а у кого-то она отнимает силы, здоровье и даже жизнь — эта загадка с самого начала пандемии мучает ученых и пока однозначного ответа на нее не найдено.

Однако результаты двух новых исследований, опубликованные 24 сентября в журнале Science, впервые дают хотя бы частичное объяснение, почему для некоторых людей вирус оказывается настолько смертоносным. Все дело в том, что в их иммунной защите от вирусов есть слабые места, появление которых связано с врожденными генетическими мутациями.

Интерфероны и аутоантитела

Большая группа исследователей из ведущих научных центров мира начала работать над этой проблемой еще в феврале 2020 года.

Жан-Лоран Казанова (Jean-Laurent Casanova), глава лаборатории генетики инфекционных заболеваний в Университете Рокфеллера (США), и его коллеги отбирали молодых пациентов, у которых развилась тяжелая форма COVID-19, и изучали их геном.

Основной целью ученых был пул из 13 генов, вовлеченных в выработку интерферонов — белков, выделяемых клетками организма в ответ на вторжение в них вирусов.

Выработка интерферонов является ключевым звеном в системе антивирусной защиты организма — выделяя эти молекулы, инфицированная клетка «бьет тревогу», в результате чего в соседних клетках начинаются изменения, в итоге приводящие к подавлению размножения вируса и распространения его по организму. Кроме того, активная выработка интерферонов в целом стимулирует иммунную систему, заставляя ее бороться с вирусом.

Ранее команда Казановы обнаружила, что существуют определенные генетические мутации, которые препятствуют производству интерферонов и их функционированию.

Носители таких мутаций особенно подвержены вирусным заболеваниям, в том числе гриппу. Ученые предположили, что в основе тяжелого течения COVID-19 также могут лежать подобные мутации.

Смотрите в галерее 15 фактов о новом коронавирусе:

Исследователи проанализировали генетические данные 659 пациентов с тяжелой, угрожающей жизни пневмонией, вызванной коронавирусной инфекцией, и 534 пациентов с легким или бессимптомным течением болезни.

Анализ продемонстрировал, что в геноме 23 тяжелых пациентов, возраст которых колебался от 17 до 77 лет, действительно присутствуют ошибки, в результате которых антивирусные интерфероны просто не вырабатываются, что и делает этих людей столь уязвимыми перед вирусом SARS-CoV-2.

Однако число носителей таких мутаций составило всего 3,5% от общего количества тяжелых больных.

И тут у Казановы и его коллег возникла новая гипотеза — возможно, у других пациентов с тяжелым течением COVID-19 тоже нарушена интерфероновая защита, но по другой причине.

По аналогии с тем, как это происходит при аутоиммунных заболеваниях, таких, как диабет 1 типа или ревматоидный артрит, организмы некоторых пациентов могут вырабатывать аутоантитела, атакующие интерфероны.

Анализ образцов крови 987 пациентов с тяжелой «ковидной» пневмонией подтвердил верность этой гипотезы — аутоантитела к интерферонам были обнаружены, по меньшей мере, у 101 больного (10%).

Эти антитела, как показали лабораторные эксперименты, полностью нейтрализуют способность интерферонов выполнять свою защитную антивирусную функцию.

У пациентов с легкой или бессимптомной формой COVID-19 подобных аутоантител найдено не было.

Почему страдают мужчины

При этом абсолютное большинство (94%) из тех, у кого обнаружили аутоантитела к интерферонам, оказались мужчинами, что, как полагают исследователи, может объяснить, почему мужчины тяжелее переносят COVID-19, чем женщины. Сейчас Казанова и его коллеги ищут, какие генетические механизмы стоят за образованием этих аутоантител.

Ученые предполагают, что этот феномен может быть связан с мутациями на Х-хромосоме. Такие мутации могут почти не сказываться на женщинах, потому что у них есть вторая Х-хромосома, компенсирующая любые возможные дефекты первой. Но для мужчин, у которых Х-хромосома только одна, малейшие генетические ошибки имеют свои последствия.

Новый подход к лечению

Как считает Казанова, полученные результаты должны немедленно повлиять на диагностику и лечение COVID-19.

Всех людей с положительным тестом на коронавирус необходимо проверять на наличие аутоантител. Вполне возможно, что их удаление из кровотока сможет облегчить симптомы болезни.

Ученые уверены в необходимости срочного проведения клинических испытаний, призванных показать эффективность применения в этом случае плазмафереза — процедуры, очищающей плазму крови от антител. Кроме того, можно попробовать искусственно вводить тяжелым пациентам другие типы интерферонов, которые не являются мишенями аутоантител, предположил Казанова.

Он и сотни его коллег из международного научного консорциума COVID Human Genetic Effort также сейчас работают над поиском других кусочков «коронавирусного пазла».

Ученые ищут не только генетические факторы, делающие людей особенно уязвимыми перед лицом инфекции, но и те, что, наоборот, обеспечивают суперзащиту от COVID-19.

Поэтому сейчас полным ходом идет набор участников нового исследования — людей, которые находились в очень близком контакте с тяжелыми пациентами, но не заболели.

Источник: https://health.mail.ru/news/pochemu_covid19_smertelno_opasna_no_daleko_ne/

Мутации

Последствия мутаций для клетки и организма

Автор статьи – Л.В. Окольнова.

Сразу на ум приходят Люди Х… или Человек – Паук …

Но это в кино, в биологии тоже так, но немного более научно, менее фантастично и более обыденно.

Мута́ция (в переводе — изменение) — устойчивое, передающееся по наследству изменение ДНК, происходящее под влиянием внешних или внутренних изменений.

Мутагенез – процесс появления мутаций.

Обыденность в том, что эти изменения (мутации) происходят в природе и у человека постоянно, почти каждодневно.

В первую очередь, мутации подразделяются на соматические – возникают в клетках тела, и генеративные – появляются только в гаметах.

Соматические мутацииГенеративные мутации
Не всегда передаются при половом размножении.Передаются при вегетативном (бесполом размножении).Передаются по наследству.

Разберем сначала виды генеративных мутаций.

Генные мутации

Что такое ген? Это участок ДНК (т.е. несколько нуклеотидов), соответственно, это и участок РНК, и участок белка, и какой-либо признак организма.

Т.е. генная мутация – это выпадение, замена, вставка, удвоение, изменение последовательности участков ДНК.

Вообще, это не всегда ведет к болезни. Например, при удвоении ДНК случаются такие “ошибки”. Но они возникают редко, это очень малый процент от всего количества, поэтому они незначительны, что практически не влияют на организм.

Бывают и серьезные мутагенезы:- серповидно-клеточная анемия у человека;- фенилкетонурия – нарушение обмена веществ, вызывающее довольно серьезные нарушения умственного развития- гемофилия

– гигантизм у растений

Геномные мутации

Вот классическое определение термина “геном”:

Геном

– совокупность наследственного материала, заключенного в клетке организма;- геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК;

– совокупность генетического материала гаплоидного набора хромосом данного вида в парах нуклеотидов ДНК на гаплоидный геном.

Для понимания сути мы очень сильно упростим, получится такое определение:

Геном – это количество хромосом

Геномные мутации – изменение числа хромосом организма. В основном, их причина – нестандартное расхождение хромосом в процессе деления.

– синдром Дауна – в норме у человека 46 хромосом (23 пары), однако при этой мутации образуются 47 хромосом
рис. синдром Дауна

– полиплойдия у растений (для растений это вообще норма – большинство культурный растений – полиплойдные мутанты)

Хромосомные мутации – деформации самих хромосом.

Примеры (некоторые перестройки такого рода есть у большинства людей и вообще никак не отражаются ни внешне, ни на здоровье, но есть и неприятные мутации):- синдром кошачьего крика у ребенка- задержка в развитии

и т.д.

Цитоплазматические мутации – мутации в ДНК митохондрий и хлоропластов.

Есть 2 органеллы со своими собственными ДНК (кольцевыми, в то время как в ядре – двойная спираль) – митохондрия и растительные пластиды.

Соответственно, есть мутации, вызванные изменениями именно в этих структурах.

Есть интересная особенность – этот вид мутации передается только женским полом, т.к. при образовании зиготы остаются только материнские митохондрии, а “мужские” отваливаются с хвостом при оплодотворении.

Примеры:- у человека – определенная форма сахарного диабета, туннельное зрение;

– у растений – пестролистность.

Соматические мутации

Это все описанные выше виды, но возникают они в клетках тела ( в соматических клетках).
Мутантных клеток обычно намного меньше, чем нормальных, и они подавляются здоровыми клетками. (Если не подавляются, то организм перерождаться или болеть).

Примеры:- у дрозофилы глаз красный, но может иметь белые фасеты

– у растения это может быть целый побег, отличающийся от других (И.В. Мичурин таким образом выводил новые сорта яблок).

– раковые клетки у человека

Примеры вопросов ЕГЭ:

Синдром Дауна является результатом мутации

1))геномной;

2) цитоплазматической;

3)хромосомной;

4) рецессивной.

Ответ: 1.

Генные мутации связаны с изменением

А) числа хромосом в клетках;

Б) структуры хромосом;

B) последовательности генов в аутосоме;

Г) нуклеогидов на участке ДНК.

Ответ: Г.

Мутации, связанные с обменом участками негомологичных хромосом, относят к

А) хромосомным;

Б) геномным;

В) точковым;

Г) генным.

Ответ: А.

Животное, в потомстве которого может появиться признак, обусловленный соматической мутацией

А) гидра

Б) волк

В) еж

Г) выдра

Ответ: А.

Источник: https://ege-study.ru/ru/ege/materialy/biologiya/mutacii/

Что, если бы…?

Около 99% нашей генетической информации такая же, как и других людей на планете. Гены определяют пол, цвет кожи и волос, наличие определенных заболеваний или иммунитет к ним и, по данным ряда исследований, даже способность влюбляться с первого взгляда.

Похожее по теме… Структура и функции ДНКВсе, что нужно знать об открытии, редактировании и функциях ДНК.

Рассказывается о самых фундаментальных аспектах ДНК, особенно о тех, при изучении которых особую роНо тот 1%, который остается в итоге, представляет особенный интерес.

Вариации генов могут дать нам если не суперспособности, то качества, которые есть далеко не у всех. Спортивный ген

У каждого из нас есть ген ACTN3, но определенные его варианты помогают организму вырабатывать особый белок — альфа-актинин-3.

Этот белок контролирует мышечные волокна, а также клетки, ответственные за быстрое натяжение и изгиб мышц, использующихся при беге или работе с весом.

Ученые открыли эту особенность некоторых людей в 2008 году, обнаружив, что именно вариант ACTN3, тут же названный спортивным геном, порой помогает профессиональным бегунам и атлетам показывать отличные результаты.

Около 99% нашей генетической информации такая же, как и других людей на планете. Гены определяют пол, цвет кожи и волос, наличие определенных заболеваний или иммунитет к ним и, по данным ряда исследований, даже способность влюбляться с первого взгляда.

Но тот 1%, который остается в итоге, представляет особенный интерес. Вариации генов могут дать нам если не суперспособности, то качества, которые есть далеко не у всех.

Спортивный ген

У каждого из нас есть ген ACTN3, но определенные его варианты помогают организму вырабатывать особый белок — альфа-актинин-3.

Этот белок контролирует мышечные волокна, а также клетки, ответственные за быстрое натяжение и изгиб мышц, использующихся при беге или работе с весом.

Ученые открыли эту особенность некоторых людей в 2008 году, обнаружив, что именно вариант ACTN3, тут же названный спортивным геном, порой помогает профессиональным бегунам и атлетам показывать отличные результаты.

Сон четыре часа в сутки

Представьте себе, что вы можете чувствовать себя полностью отдохнувшим всего после 4 часов сна в течение ночи. Для некоторых людей это совершенно нормально, и дело здесь, опять-таки, в генетике.

Исследователи полагают, что за способность к почти моментальному восстановлению ответственен ген HDEC2. Логично предположить, что у людей, которые быстро высыпаются, и родители проявляют те же удивительные «способности».

Невероятно крепкие кости

Исследования показали, что определенные варианты гена LRP5, регулирующего плотность костно-минеральной ткани в организме, приводят к чрезмерной хрупкости и слабости костей.

Следствием могут быть такие диагнозы, как детский остеопороз и синдром остеопороза-псевдоглиомы (заболевание, связанное как со снижением прочности костей, так и с ухудшением зрения).

Однако другой тип мутации LRP5 может иметь прямо противоположный эффект — и человек станет обладателем костей, которые почти невозможно сломать.

Низкий холестерин

Несмотря на то, что рацион и уровень физической активности — главные факторы, влияющие на уровень холестерина в крови, генетика также играет здесь важную роль.

Причина в мутациях гена, ответственного за продуцирование белка, переносящего эфиры холестерина (CETP). В этом случае уровень хорошего холестерина (ЛВП) повышается, а холестерин быстрее попадает в печень и выводится из организма.

Итог — низкий уровень холестерина в целом и минимальный риск ишемической болезни сердца.

Еще больше кофе

Похожее по теме… ГенетикаГенетика — наука о закономерностях наследственности и изменчивости.Существует как минимум шесть генов, связанных со способностью нашего тела обрабатывать поступающий в него кофеин.

Варианты некоторых генов, например BDNF и SLC6A4, влияют на полезный мочегонный эффект кофеина, который заставляет нас пить больше воды всего после одной чашки кофе. Другие мутации влияют на метаболические процессы: это объясняет, почему одни люди не могут заснуть после эспрессо, выпитого в 16.

00, а другие будут сладко спать даже после двойного американо, выпитого прямо перед сном.

Возможно, вы не знали, но супергерои вроде тех, что показывают в фильмах «Мстители» и «Люди Х», существуют в реальном мире. Впрочем, в отличие от кино, сверхчеловеческими способностями их наделяет не взрыв реактора или «волшебная сыворотка», но разного рода генетические мутации.

Ниже — самые необычные последствия подобных нарушений. От способности видеть более 100 миллионов оттенков цвета до невозможности поправиться.

Мощные вкусовые рецепторы

Medical Daily приводит данные исследований, согласно которым около 25% людей имеют предрасположенность к более ярким вкусовым ощущениям. Особенно это касается горького вкуса, который при мутации генов становится крайне интенсивным. Ученые полагают, что мутация возникла много лет назад в качестве защитного фактора, позволявшего нашим предкам определять ядовитые растения «на зуб».

Иммунитет к боли

Врожденная нечувствительность к боли (сенсорная нейропатия) является редким генетическим нарушением, при котором человек не способен чувствовать боль, даже если он сломал кость, обжегся или получил какую-либо другую травму.

Она вызывается мутацией в гене SCN11A, снижающей количество натрия в клетках организма, что, в свою очередь, лишает тело способности передавать сигнал о боли в мозг.

По данным исследований, врожденной нечувствительностью к боли страдают около 100 человек по всему миру.

Рентгеновское зрение

Тетрахроматия — способность видеть излучения, выходящие за пределы видимого человеческим глазом спектра, и различать цвета, которые обычный человек характеризует как одинаковые.

Такой особенностью строения глаза обладают некоторые виды птиц, рыб и насекомых, а также ограниченное число людей с мутацией генов, отвечающих за синтез опсинов.

Для сравнения: если мы с вами можем различать около миллиона цветов, но глазу тетрахроматика доступны 100 миллионов.

Устойчивость к набору веса

Неспособность набрать вес может показаться сбывшейся мечтой, однако на самом деле речь идет о серьезном заболевании, сопряженном с множеством проблем.

MDP-синдром — крайне редкое явление, характеризующееся отсутствием в организме подкожного жира.

Этим синдромом страдает всего 8 человек в мире, включая двукратного победителя паралимпийских игр Тома Стэнифорда (Tom Staniford), и все они подвержены высокому риску переломов и диабета.

Двойное количество мышц

Люди, которые имеют генетическую мутацию в гене MSTN, могут похвастаться увеличенной мышечной массой. Работа MSTN заключается в производстве миостатина — белка, который подавляет рост и дифференцировку мышечной ткани, когда ее достаточно.

Именно поэтому, когда ген мутирует, рост мышц не прекращается, а как раз наоборот. Врачи говорят, что у людей с подобным генетическим нарушением по крайней мере в два раза больше мышц, чем у среднестатистического человека их пола и возраста.

Источник: https://page.maple4.ru/inoe/stati/interesnoe/1291-mutaczii.html

3.7. Вредное влияние мутагенов на генетический аппарат клетки. Наследственные болезни

Последствия мутаций для клетки и организма

Способность к мутированию — свойство гена. Каждый ген мутирует сравнительно редко, что имеет определенное биологическое значение, обеспечивая относительное постоянство видов и их приспособленность к окружающей среде.

 Установлена зависимость мутаций от физиологического состояния клетки, режима питания, температуры и других естественных факторов.

При воздействии ряда химических веществ (иприта, этиленамина, колхицина и др.), радиоактивных изотопов, ионизирующих излучений, ультрафиолетовых и рентгеновских лучей и др. количество мутаций увеличивается в сотни раз и возрастает прямо пропорционально их дозе.

Мутагены

                    факторы, вызывающие мутации у живых организмов:

       • физические мутагены (излучения, температура);

       • химические мутагены (токсичные вещества);

       • биологические мутагены (вирусы).

Общие свойства мутагенов:

 • универсальность — способность вызывать мутации во всех живых организмах;

 • отсутствие нижнего порога действия — способность вызывать мутации даже в очень малых дозах;

 • спонтанность (ненаправленность) возникающих мутаций.

Употребление алкоголя, наркотиков, никотина, некоторых лекарственных препаратов, равно как и воздействие различных мутагенов, оказывает вредное влияние на генетический аппарат клетки.

Особенно опасны мутации в половых клетках, которые могут передаваться из поколения в поколение.

В этом плане особенно актуальны мероприятия по защите окружающей среды от загрязнения мутагенами, а для предупреждения и профилактики наследственных заболеваний человека — медико-генетическое консультирование семейных пар.

Медицинская генетика – раздел антропогенетики, изучающий наследственные заболевания человека, их происхождение, диагностику, лечение и профилактику.

Основным средством сбора информации о больном является медико-генетическое консультирование. Оно проводится в отношении лиц, у которых среди родных наблюдались наследственные заболевания.

Цель – прогноз вероятности рождения детей с патологиями, либо исключение возникновения патологий.

Наследственные заболевания, передаваемые потомкам:

– генные, сцепленные с Х-хромосомой – гемофилия, дальтонизм;

– генные, сцепленные с У-хромосомой – гипертрихоз (оволосение ушной раковины);

– генные аутосомные: фенилкетонурия, сахарный диабет, полидактилия, хорея Гентингтона и др.;

– хромосомные, связанные с мутациями хромосом, например синдром кошачьего крика ( частичная моносомия по короткому плечу 5-й хромосомы (5p-). Синдром обусловлен делецией короткого плеча 5-й хромосомы. У детей с этой хромосомной аномалией отмечается необычный плач, напоминающий требовательное кошачье мяуканье или крик);

– геномные – поли– и гетероплоидия – изменение числа хромосом в кариотипе организма.

Полиплоидия – двух– и более кратное увеличение числа гаплоидного набора хромосом в клетке. Возникает в результате нерасхождения хромосом в мейозе, удвоения хромосом без последующего деления клеток, слияния ядер соматических клеток.

Гетероплоидия (анеуплоидия) – изменение характерного для данного вида числа хромосом в результате их неравномерного расхождения в мейозе.

Проявляется в появлении лишней хромосомы (трисомия по 21 хромосоме ведет к болезни Дауна) или отсутствии в кариотипе гомологичной хромосомы (моносомия).

Например, отсутствие второй Х-хромосомы у женщин вызывает синдром Тернера, проявляющийся в физиологических и умственных нарушениях. Иногда встречается полисомия – появление нескольких лишних хромосом в хромосомном наборе.

Методы генетики человека.

Генеалогический – метод составления родословных по различным источникам – рассказам, фотографиям, картинам. Выясняются признаки предков и устанавливаются типы наследования признаков.

Типы наследования: а) аутосомно-доминантное, б) аутосомно-рецессивное, в) сцепленное с полом наследование.

Человек, в отношении которого составляется родословная, называется пробандом.

Близнецовый. Метод изучения генетических закономерностей на близнецах. Близнецы бывают однояйцовые (монозиготные, идентичные) и разнояйцовые (дизиготные, неидентичные).

Цитогенетический. Метод микроскопического изучения хромосом человека. Позволяет выявить генные и хромосомные мутации.

Биохимический. На основе биохимического анализа позволяет выявить гетерозиготного носителя заболевания, например носителя гена фенилкетонурии можно выявить по повышенной концентрации фенилаланина в крови.

Популяционно-генетический. Позволяет составить генетическую характеристику популяции, оценить степень концентрации различных аллелей и меру их гетерозиготности. Для анализа крупных популяций применяется закон Харди-Вайнберга.

Тематические задания

A1 Генеалогический метод основан на:

1)    биохимическом анализе ДНК

2)    изучении количества и структуры хромосом

3)    составлении родословных

4)    анализе биологических жидкостей человека

A2 Комбинативная изменчивость связана с:

1)    новыми сочетаниями генов, которые возникают в результате кроссинговера, независимого расхождения негомологичных хромосом

2)    изменениями в процессе индивидуального развития организма

3)    генными и хромосомными мутациями

4)    влиянием окружающей среды на организм

A3   В селекционной работе для создания разнообразия исходных форм применяется:

1)    отдаленная гибридизация

2)    экспериментальный мутагенез

3)    явление полиплоидии

4)    повышение продуктивности

A4 Направление биотехнологии, в котором используются микроорганизмы для получения антибиотиков и витаминов, называется:

1)    биохимический синтез

2)    генная инженерия

3)    клеточная инженерия

4)    микробиологический синтез

A5 При скрещивании двух морских свинок с черной шерстью (доминантный признак) получено потомство, среди которого особи с белой шерстью составили 25%. Каковы генотипы родителей?

1)    АА х аа

2)    Аа х АА

3)    Аа х Аа

4)    АА х АА

A6 Какие гены проявляют свое действие в первом гибридном поколении?

1)    аллельные

2)    доминантные

3)    рецессивные

4)    сцепленные

A7 Набор хромосом, характерный для данного вида организмов – это:

1)    геном

2)    генофонд

3)    генотип

4)    кариотип

A8 Количество групп сцепления генов у организмов зависит от числа:

1)    пар гомологичных хромосом

2)    аллельных генов

3)    доминантных генов

4)    молекул ДНК в ядре клетки

A9 Чистая линия растений – это потомство:

1)    гетерозисных форм

2)    одной самоопыляющейся особи

3)    межсортового гибрида

4)    двух гетерозиготных особей

A10 У собак чёрная шерсть (А) доминирует над коричневой (а), а коротконогость (В) – над нормальной длиной ног (b). Выберите генотип чёрной коротконогой собаки, гетерозиготной только по признаку длины ног.

1)    ААBb

2)    Аabb

3)    AaBb

4)    AABB

A11 Какой процент растений ночной красавицы с розовыми цветками можно ожидать от скрещивания растений с красными и белыми цветками (неполное доминирование)?

1)    25%

2)    50%

3)    75%

4)    100%

A12 При моногибридном скрещивании гетерозиготной особи с гомозиготной рецессивной в их потомстве происходит расщепление признаков по фенотипу в соотношении:

1)    3 : 1

2)    9 : 3 : 3 : 1

3)    1 : 1

4)    1 : 2 : 1

A13 В селекции для получения новых полиплоидных сортов растений:

1)    скрещивают особи двух чистых линий

2)    скрещивают родителей с их потомками

3)    кратно увеличивают набор хромосом

4)    увеличивают число гомозиготных особей

A14 Мутационная изменчивость, в отличие от модификационной:

1)    носит обратимый характер

2)    передаётся по наследству

3)    характерна для всех особей вида

4)    является проявлением нормы реакции признака

A15 При скрещивании доминантных и рецессивных особей первое гибридное поколение единообразно. Чем это объясняется?

1)    все особи имеют одинаковый генотип

2)    все особи имеют одинаковый фенотип

3)    все особи имеют сходство с одним из родителей

4)    все особи живут в одинаковых условиях

В1 Примерами взаимодействия неаллельных генов являются:

1)    множественный аллелизм

2)    полимерия

3)    плейотропия

4)    комплементарность

5)    кодоминирование

6)    эпистаз

В2 К искусственно выведенным популяциям организмов относятся:

1)    сорт

2)    вид

3)    порода

4)    тип

5)    класс

6)    штамм

B3 Установите соответствие между признаками изменчивости и её видом:

Признаки изменчивости

Изменчивость

1)    носит массовый характер

2)    имеет приспособительное значение

3)    связана с изменением генов или хромосом

4)    пределы изменчивости зависят от нормы реакции

5)    у потомков появляются новые признаки

6)    изменения организмов необратимы

А) мутационная

Б) модификационная

B4 Установите соответствие между характеристикой мутации и ее типом:

Характеристика мутации

Типы мутаций

1)    включение двух лишних нуклеотидов в молекулу ДНК

2)    кратное увеличение числа хромосом в гаплоидной клетке

3)    нарушение последовательности аминокислот в молекуле белка

4)    поворот участка хромосомы на 180°

5)    уменьшение числа хромосом в соматической клетке

6)    обмен участками негомологичных хромосом

А) генные

Б) хромосомные
В) геномные

B5 Установите последовательность этапов постановки эксперимента для определения характера наследования признака:
А) статистическая обработка результатов

Б) скрещивание выбранных организмов

В) получение потомства и подсчет полученных особей с различными фенотипами
Г) выбор организмов с альтернативными признаками

B6 Установите последовательность событий, приводящих к появлению потомства с измененным признаком:

А) образование зиготы, содержащей нормальный и мутантный аллели
Б) рождение мутантного потомства

В) возникновение генной мутации в половой клетке

Г) действие мутагена на родительский организм

Д) оплодотворение

C1 Наличие хохла у уток наследуется как доминантный аутосомный признак. Гомозиготы по этому признаку погибают на ранних стадиях развития, а гетерозиготы жизнеспособны.

Отсутствие хохла определяется рецессивным аллелем этого гена. Хохлатых уток скрестили между собой. Составьте схему решения задачи.

Определите генотипы родителей, соотношение генотипов и фенотипов ожидаемых и родившихся потомков.

C2 При скрещивании красноплодной земляники между собой всегда получаются красные ягоды, а при скрещивании белоплодной – белые. В результате скрещивания этих сортов между собой получаются розовые ягоды. Какое потомство получится при скрещивании растений с розовыми плодами между собой? Составьте схему решения задачи. Какой генетический закон проявляется на этом примере?

C3 Дальтонизм (цветовая слепота) наследуется как рецессивный признак, сцепленный с Х-хромосомой. В семье отец и мать различают цвета нормально, но отец женщины был дальтоником. Составьте схему решения задачи, определите вероятность рождения в этой семье детей – носителей гена цветовой слепоты.

C4 Дигетерозиготное растение гороха нормального роста и с зелеными створками плодов скрестили с карликовым растением с желтыми створками плодов. Определите генотипы родителей, фенотипы и генотипы возможных потомков. Составьте схему решения задачи. Какова вероятность появления в потомстве карликовых растений с зелеными створками плодов?

C5 При скрещивании самцов морских свинок с белой прямой шерстью с самками с черной курчавой шерстью все потомки имели курчавую шерсть, причем у одной половины шерсть была белого цвета, у второй – черного.

При скрещивании тех же самцов морских свинок (с белой прямой шерстью) с самками, имеющими черную прямую шерсть, все их потомство имело черную прямую шерсть.

Определите доминантные и рецессивные признаки, генотипы всех родительских самцов и самок.

 C6 У родителей с темными волосами и карими глазами родился светловолосый и голубоглазый ребенок. Определите генотипы родителей и первого ребенка. Составьте схему решения задачи. Гены обоих признаков расположены в различных аутосомах. Какой генетический закон проявляется в этом случае?

C7 Скрестили дигетерозиготных самок мухи дрозофилы с серым телом и нормальными крыльями (один из родителей этих самок был с черным телом и укороченными крыльями) с самцами с черным телом и укороченными крыльями.

Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, если известно, что гены окраски тела и формы крыльев находятся в одной аутосоме и между ними происходит кроссинговер.

Объясните полученные результаты.

C8 У человека катаракта и шестипалость обусловлены доминантными аутосомными тесно сцепленными генами (кроссинговер между ними не происходит). Жена обладает обоими признаками, причем у ее отца было нормальное зрение и нормальное число пальцев. Муж здоров. Какие генотипы и фенотипы могут быть у их потомков? Составьте схему решения задачи. Объясните полученные результаты.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/organizm-kak-biologicheskaya-sistema/3-7-vrednoe-vliyanie-mutagenov-na-geneticheskij-apparat-kletki-nasledstvennye-bolezni-cheloveka

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: