Полное окисление глюкозы сколько атф

Содержание
  1. Аэробный и анаэробный гликолиз
  2. Определение
  3. Принцип действия
  4. Программа тренировок
  5. АнП
  6. Улучшение гликогенолиза
  7. Пищевые добавки
  8. Этапы
  9. Советы
  10. Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)
  11. Схема процесса гликолиза и его реакции
  12. Таблица процесс гликолиза его реакции
  13. Расчет атф при анаэробном окислении
  14. Аэробное окисление
  15. Организм должен уметь синтезировать глюкозу
  16. Анаэробное и аэробное окисление
  17. Анаэробное окисление глюкозы
  18. А. Аэробное и анаэробное окисление глюкозы
  19. В чем суть процесса биологического окисления? чем отличаются аэробное и анаэробное окисление? опишите ферментную систему, осуществляющую аэробное окисление в митохондриях. какие пищевые вещества необходимы для синтеза компонентов этой системы?
  20. Полное окисление глюкозы. Реакция окисления глюкозы
  21. Моносахариды
  22. Олигосахариды
  23. Полисахариды
  24. Функции углеводов в организме человека
  25. Механизм гликолиза
  26. Стадия №1 реакции окисления глюкозы
  27. Стадия №2 – полное окисление глюкозы
  28. Анаэробный путь глюкозного окисления
  29. Образование коферментов
  30. Видоизмененные формы гликолиза
  31. Заключение

Аэробный и анаэробный гликолиз

Полное окисление глюкозы сколько атф

Для успешного прогрессирования в спорте необходимо иметь мощную теоретическую базу, позволяющую правильно строить тренировки и использовать имеющийся потенциал. Анаэробный гликолиз – важный процесс, который протекает в органических тканях и дает возможность успешно заниматься.

Какое значение он представляется для нашего организма? Как его применять при построении тренировочной программы? В каких условиях он будет проходить максимально результативно? Можно ли улучшить протекание данного явления? Как это сделать? Ответы на перечисленные вопросы читайте дальше.

Определение

Анаэробный гликолиз – ферментативный процесс, включающий последовательное преобразование виноградного сахара для получения энергии. Реакция строится на обратимом превращении пируватов в лактат посредством катализа лактатдегидрогеназой.

С ее помощью органы человека используют аденозинтрифосфат для получения сил во время тренинга. этого компонента удваивается и удерживается на таком уровне около 20 секунд, что позволяет успешно закончить подход.

Основная особенность происходящей реакции заключается в отсутствии участия O₂ и побочном образовании лактата.

Аэробный гликолиз – это схожее явление, в ходе которого также происходит разложение глюкозы с получением АДФ, обеспечивающее обмен энергии в организме. В отличие от предыдущей разновидности получения ресурсов реакция протекает с атомами кислорода и водорода. В результате побочных компонентов образуется углекислый газ и вода.

В обоих случаях энергетический выброс дает силы человеку справиться с физической нагрузкой в течение определенного времени.

Принцип действия

Описанная система обмена веществ основывается на циркуляции декстрозы в крови и гликогена, который хранится в мышцах и печени. За счет изменения конфигурации молекул происходит выделение АТФ. В результате таких преобразований осуществляются разные процессы, многие из которых не только высвобождают энергию, но и потребляют ее.

Аэробный и анаэробный гликолиз связаны с определенными энзимами, чувствительными к кислотно-щелочному балансу. Во время физических действий выделяется молочная кислота, одновременно запускающая образование ресурсов в организме и усталость. То, какое состояние будет преобладать, зависит от характера тренинга:

  • аэробика – продолжительность упражнений до 30 секунд;
  • анаэробика – длительное силовое напряжение.

Недостаток тренировок второго типа заключается в отсутствии возможности заниматься часто. В противном случае объем лактата в теле превысит допустимую норму, что повлечет упадок сил или судороги.

Нагрузки первого типа лучше подходят для развития выносливости. Они помогают в борьбе с лишним весом, укрепляют легкие, снижают артериальное давление.

Такие упражнения относятся к кардиотренировкам, развивающим устойчивость к стрессам. Но для набора мышечной массы больше подходят силовые виды спорта.

Их преимущество заключается в том, что даже в состоянии покоя сжигается большое количество калорий.

Программа тренировок

Анаэробный гликолиз и аэробный, отличия которых достаточно существенны, должны присутствовать в жизнедеятельности любого человека. Поэтому в спорте используются как кардио, так и силовые упражнения. Первые необходимы для обеспечения организма O₂, жиросжигания, похудения. Они гарантируют размеренное и продолжительное воздействие и включают:

  • езду на велосипеде;
  • плавание;
  • бег в среднем темпе;
  • катание на коньках, роликах, лыжах;
  • использование специальных тренажеров (беговая дорожка, велотренажер, степпер).

При регулярном занятии перечисленными видами спорта снижается риск развития сердечно-сосудистых заболеваний. Сердечная мышца укрепляется достаточно, чтобы выдержать силовые действия.

Благодаря этому анаэробный гликолиз, реакции которого требуют сильного физического напряжения, не нанесет вреда внутренним органам.

Он строится на так называемых «безкислородных» нагрузках (кратковременность, интенсивность, высокие силовые затраты). В данную категорию входят:

  • спринт;
  • бодибилдинг;
  • пауэрлифтинг.

В ходе тренинга потребляется минимум кислорода, поэтому основной запас энергии высвобождается из мышечных волокон. Регулярные занятия развивают мускулатуру, силовые показатели, укрепляют опорно-двигательный аппарат.

Преимущество заключается в долговременном эффекте, сохраняющемся в течение 36 часов с момента занятия в спортзале.

Ускоренный метаболизм продолжает воздействовать на организм, усиленно сжигая калории и снижая процент жировых отложений.

АнП

АнП – важное понятие в тренировках на выносливость, предполагающее «порог» интенсивности в одном занятии. Он представляет собой норму, при которой лактат в крови превышает показатель его нейтрализации.

Анаэробный гликолиз происходит в мышцах и других тканях, затрагивая работу внутренних органов. Поэтому определить АнП можно при помощи ЧСС.

Задача осуществляется путем выполнения кардионагрузок на большие дистанции или посредством подсчета в лабораторных условиях.

При высоких нагрузках количество молочной кислоты повышается, и организм прикладывает усилия, чтобы понизить этот показатель. Если АнП превысит допустимый уровень, самочувствие атлета ухудшится, и он не сможет продолжать заниматься. Чтобы предотвратить описанный исход, необходимо тренироваться, отслеживая собственный порог.

Для самостоятельного расчета АнП подходит бег. Задача осуществляется по следующей схеме:

  • пробежите дистанцию в среднем темпе в течение 30 минут;
  • через 10 минут с начала старта замеряйте пульс;
  • повторите процедуру по окончании пробежки;
  • суммируйте оба показателя;
  • разделите полученное число на 2.

Результат – анаэробный порог. Чтобы его не превысить, необходимо заниматься на 85% от допустимого максимума. Для этого рекомендуется отслеживать пульс в ходе тренировки.

Улучшение гликогенолиза

Чтобы повысить эффективность данной системы, необходимо воспользоваться специальной тренировочной программой. При правильном подходе содержание глюкозы и гликогена увеличится, за счет чего усилится выработка энергии, позволяющая дольше заниматься. Для формирования привычки к более высокому уровню молочной кислоты и наработки выносливости, следует:

  • тренироваться со средней и высокой интенсивностью;
  • использовать веса, с которым можно сделать 8-15 повторений в одном сете;
  • отдыхать между подходами 30-60 секунд.

Большой объем, умеренные веса и короткие перерывы повысят выработку лактата. При регулярных занятиях тело адаптируется к высокому показателю данного вещества, выполнять упражнения станет легче, утомляемость снизится. Активируется работа энергетической системы, усиливающей выработку ресурсов, используемых для выполнения силовых упражнений.

Пищевые добавки

Для улучшения гликогенолиза изобретено спортивное питание, ускоряющее синтез компонентов, принимающих в нем участие.

Пищевые добавки позволяют организму вырабатывать больше виноградного сахара и гликогена, за счет чего сроки восстановления сокращаются. Но описанная особенность распространяется не на всех людей.

Если человек испытывает нехватку разных компонентов, спортивное питание улучшит гликогенолиз. В противном случае разница в энергетическом балансе незаметна.

Этапы

Переработка глюкозы в энергию в клетках состоит из трех стадий:

  • Подготовительный гликолиз аэробный. На этом этапе декстроза расщепляется и преобразуется в пируват.
  • катаболизм.
  • Тканевое дыхание. Необходимые питательные вещества вырабатываются по митохондриальной цепи переноса электронов.

Всего из одной молекулы глюкозы возникает 38 молекул АТФ. Участие кислорода в реакции тормозит процесс. Но его отсутствие не принесет вреда, поскольку гликогенолиз рассчитан на короткие интенсивные нагрузки. При активном дыхании в клетках происходит переключение на более экономичный вариант получения ресурсов.

Советы

Большинство людей не знает, где протекает анаэробный этап гликолиза. Данное явление происходит в цитоплазме клеток, но для результативного тренинга это не имеет значения точно так же, как и то, какие продукты и ферменты выделяются. Главное для атлета – придерживаться основных рекомендаций, обеспечивающих эффективную тренировку и восстановление.

Для этого:

  • чередуйте силовые с кардио;
  • не занимайтесь дольше 30-40 минут, чтобы уровень гормона стресса не превысил норму;
  • распределите «кислородные» и «безкислородные» занятия по разным дням;
  • не перегружайте мышцы;
  • делайте разминку, чтобы мышечные ткани лучше воспринимали поступление молочной кислоты;
  • давайте время телу восстановиться (1-3 дня в зависимости от интенсивности тренировки).

Не забывайте о режиме сна, здоровом питании, отсутствии вредных привычек. Перечисленные факторы создадут условия для хорошей работы внутренних органов, благодаря чему обменные процессы будут протекать быстрее и эффективнее. Периодизированная программа обеспечит результативную гипертрофию.

Также учитывайте состояние здоровья. Нарушение метаболизма негативно сказывается на энергетическом обмене в клетках и гликогенолизе. Поэтому предварительный расчет АнП и медицинский осмотр – обязательны.

При обнаружении проблем со здоровьем интенсивность нагрузок необходимо снизить, иначе будет нарушен не только метаболизм, но и работа внутренних органов.

Источник: https://zen.yandex.ru/media/fiteria/aerobnyi-i-anaerobnyi-glikoliz-5ea2d19f61b0b56bcc486b0c

Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)

Полное окисление глюкозы сколько атф

Гликолиз  –  процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.

Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН).

При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ.

60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.

Аэробный процесс гликолиза (10 реакций), уравнение (с образованием пирувата):

C6H12O6 + 2АДФ + 2Н3РO4 + 2НАД+  ——>  2CH3COCOOH + 2АТФ + 2Н2O + 2НАДН•Н+

Анаэробный процесс гликолиза (11 реакций), уравнение (с образованием лактата):

C6H12O6 + 2АДФ + 2Н3РO4  ——>  2СН3СНОНСООН + 2АТФ + 2Н2О

Схема процесса гликолиза и его реакции

На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках – число молекул.

ATP (АТФ) – это аденозинтрифосфорная кислота, универсальный источник энергии

ADP (АДФ) – это аденозиндифосфат, нуклеотид, участвует в энергетическом обмене

NAD (НАД) – никотинамидадениндинуклеотидфосфата

NADH (НАД•Н) – востановленная форма NAD

Таблица процесс гликолиза его реакции

Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.

Реакции гликолизаХод реакцийФерменты, Активаторы, ингибиторы
Стадия активации глюкозы проходит в 5 реакций, в ходе которых 1 молекула гексозы (глюкозы) расщепляется на 2 молекулы триоз-глицеральдегидфосфата
1. Необратимая реакция фосфорилирования глюкозыПроцесс гликолиза начинается с фосфорилирования глюкозы за счет АТФ – первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. В гликолизе может участвовать не только глюкоза, но и другие гексозы (фруктоза), но в результате фосфорилирования и активации все равно образуется глюкозо-6-фосфат.фермент: гексокиназаАктиваторы: АДФ, Н3РO4.Ингибиторы: глюкозо-6-Ф, фосфоенолпируват.
2. Обратимая реакция изомеризации глюкозо-6-фосфатаВо второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат.фермент: глюкозо-6-фосфатизомераза
3. Необратимая реакция фосфорилирования фруктозо-6-фосфата (ключевая стадия гликолиза)В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТФ (уже вторая) – это вторая пусковая реакция гликолиза. Она идет в присутствии Mg2+ и является необратимой, так как сопровождается масштабным уменьшением свободной энергии.фермент: фосфофруктокиназаАктиваторы: АДФ, АМФ, Н3РO4, К+.Ингибиторы: АТФ, цитрат, НАДН.
4. Обратимая реакция дихотомического расщепления фруктозо-1,6-дифосфатаВ четвертой реакции гликолиза происходит расщепление фруктозо-1,6-дифосфата на две молекулы глицеральдегид-3-фосфата.фермент: алъдолаза
5. Обратимая реакция изомеризации дигидроксиацетона-3-фосфат в глицеральдегид-3-фосфатВ пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза.фермент: триозофосфатизомераза
Проходит в 6 реакций (или 5), в ходе которых энергия окислительных реакций трансформируется в химическую энергию АТФ (субстратное фосфорилирование).
6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата (реакция гликолитической оксиредукции)В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3-бифосфоглицериновая кислота).фермент: глицералъдегид-3-фосфат-дегидрогеназа
7. Субстратное фосфорилирование АДФ (7)В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР).фермент: фосфоглицераткиназа
8. Реакция изомеризации 3-фосфоглицерата в 2-фосфоглицератВ восьмой реакции гликолиза происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота).
9. Реакция енолизацииДевятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфоенолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула водыфермент: енолаза
10. Реакция субстратного фосфорилированияВ ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.фермент: пируваткиназа
11. Реакция обратимого восстановления пировиноградной кислоты до молочной кислоты (в анаэробных условиях)Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзимом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях.фермент: лактатдегидрогеназа

_______________

Источник информации:

1. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

2. Биология в таблицах и схемах / Спб. — 2004.

3. Биохимия в схемах и таблицах / И. В. Семак – Минск — 2011.

Источник: https://infotables.ru/biologiya/81-biokhimiya/1048-glikoliz

Расчет атф при анаэробном окислении

Полное окисление глюкозы сколько атф

Наподготовительном этапе на активациюглюкозы затрачивается2молекулы АТФ, фосфат каждой из которыхоказывается на триозе – глицеральдегидфосфатеи диоксиацетонфосфате.

Вследующий второй этап входят две молекулыглицеральдегидфосфата, каждая из которыхокисляется до пирувата с образованием2-х молекул АТФ в седьмойи десятойреакциях– реакциях субстратного фосфорилирования.Таким образом, суммируя, получаем, чтона пути от глюкозы до пирувата в чистомвиде образуется 2 молекулы АТФ.

Однаконадо иметь в виду и пятую,глицеральдегидфосфат-дегидрогеназную,реакцию, из которой выходит НАДН. Еслиусловия анаэробные,то он используется в лактатдегидрогеназнойреакции, где окисляется для образованиялактата и в получении АТФ неучаствует.

Участки гликолиза, связанные с образованием и затратой энергии
Расчет энергетического эффекта анаэробного окисления глюкозы

Аэробное окисление

Еслив клетке имеется кислород, то НАДНизгликолиза направляется в митохондрию (челночныесистемы),на процессы окислительного фосфорилирования,и там его окисление приносит дивидендыв виде трех молекул АТФ.

Образовавшийсяв гликолизе пируват в аэробных условияхпревращается в ПВК-‑дегидрогеназномкомплексе(посмотреть) вацетил-S-КоА, при этом образуется 1молекула НАДН.

Ацетил-S-КоАвовлекается в ЦТКи,окисляясь, дает 3 молекулы НАДН, 1 молекулуФАДН2,1 молекулу ГТФ. Молекулы НАДН и ФАДН2 движутсяв дыхательную цепь (посмотреть),где при их окислении в сумме образуется11 молекул АТФ. В целом при сгорании однойацетогруппы в ЦТК образуется 12 молекулАТФ.

Суммируярезультаты окисления “гликолитического”и “пируватдегидрогеназного” НАДН,”гликолитический” АТФ, энергетическийвыход ЦТК и умножая все на 2, получаем38 молекул АТФ.

Участки окисления глюкозы, связанные с образованием энергии
Расчет энергетического эффекта аэробного окисления глюкозы

Организм должен уметь синтезировать глюкозу

Вклетках организма всегда существуетпотребность в глюкозе:

  • для эритроцитовглюкоза является единственным источником энергии,
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников,
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Такимобразом, при определенных ситуациях –при низком содержании углеводов в пище,голодании, длительной физической работе,т.е. когда глюкоза крови расходуется инаступает гипогликемия,организм должен иметь возможностьсинтезировать глюкозу и нормализоватьее концентрацию в крови. Это достигаетсяреакциями глюконеогенеза

Поопределению, глюконеогенез –это синтез глюкозы из неуглеводныхкомпонентов: лактата, пирувата, глицерола,кетокислот цикла Кребса и другихкетокислот, из аминокислот.

Необходимостьглюконеогенеза в организме демонстрируютдва цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатныйцикл (цикл Кори)

Глюкозо-лактатныйцикл –это циклический процесс, объединяющийреакции глюконеогенеза и реакциианаэробного гликолиза. Глюконеогенезпроисходит в печени, субстратом длясинтеза глюкозы является лактат,поступающий в основномиз эритроцитовили мышечнойткани.

В эритроцитахмолочнаякислота образуется непрерывно, так какдля них анаэробный гликолиз являетсяединственным способом образованияэнергии.

В скелетныхмышцах высокоенакопление молочной кислоты (лактата)является следствием гликолиза при оченьинтенсивной, субмаксимальной мощности,работе, при этом внутриклеточный рНснижается до 6,3-6,5. Но даже при работенизкой и средней интенсивности вскелетной мышце всегда образуетсянекоторое количество лактата. 

Убратьмолочную кислоту можно только однимспособом – превратить ее в пировинограднуюкислоту. Однако сама мышечная клеткани при работе, ни во время отдыха неспособна превратить лактат в пируватиз-за особенностей изоферменталактатдегидрогеназы-‑5.

Зато клеточнаямембрана высоко проницаема для лактатаи он движется по градиенту концентрациинаружу. Поэтому во время и после нагрузки(при восстановлении) лактат легкоудаляется из мышцы. Это происходитдовольно быстро, всего через 0,5-‑1,5часа в мышце лактата уже нет.

Малая частьмолочной кислоты выводится с мочой. 

Большаячасть лактата крови захватываетсягепатоцитами, окисляется в пировинограднуюкислоту и вступает на путь глюконеогенеза.Глюкоза, образованная в печени используетсясамим гепатоцитом или возвращаетсяобратно в мышцы, восстанавливая во времяотдыха запасы гликогена. Также она можетраспределиться по другим органам.

Источник: https://studfile.net/preview/6659418/page:85/

Анаэробное и аэробное окисление

Полное окисление глюкозы сколько атф

В аэробных условиях глюкоза окисляется до СО2 и Н2О. Суммарное уравнение:

Этот процесс включает несколько стадий:

Аэробный гликолиз. В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН2;

Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО2 и образованием 2 НАДН2;

ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО2, образованием 2 ГТФ (дают 2 АТФ), 6 НАДН2 и 2 ФАДН2;

Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН2, 2 (4) ФАДН2 с участием 6 О2, при этом выделяется 6 Н2О и синтезируется 34 (32) АТФ.

В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.

Анаэробное окисление глюкозы

Катаболизм глюкозы без О2 идет в анаэробном гликолизе и ПФШ (ПФП).

В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О.

В ходе ПФП из глюкозы образуются пентозы и НАДФН2. В ходе ПФШ из глюкозы образуются только НАДФН2.

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз – это процесс окисления глюкозы до ПВК, протекающий в присутствии О2.

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О2.

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

В любом гликолизе можно выделить 2 этапа:

1 этап подготовительный, в нем затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы;

2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН2, которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.

Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ + 6АТФ (из 2НАДН2)

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ

Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа(гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу. Кm + оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН2, которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.

7.Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.

В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8.Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.

9.Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F – .

10.Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН2, глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.

Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН2 зависит от наличия О2.

А. Аэробное и анаэробное окисление глюкозы

/ — Далее Разделы / А. Аэробное и анаэробное окисление глюкозы

В присутствии кислорода (в аэробных условиях) большинство клеток животных получают энергию за счёт полного разрушения питательных веществ (липидов, аминокислот и углеводов), то есть за счёт окислительных процессов.

В отсутствие кислорода (анаэробные условия) клетка может синтезировать АТФ (АТР) только за счёт гликолитического разрушения глюкозы.

Хотя такое разрушение глюкозы, заканчивающееся образованием лактата, даёт незначительную энергию для синтеза АТФ, этот процесс имеет решающее значение для существования клеток при недостатке или в отсутствие кислорода.

В аэробных условиях (на схеме слева) АТФ образуется почти исключительно за счёт окислительного фосфорилирования (см. Геном). Жирные кислоты в виде ацилкарнитина попадают в матрикс митохондрий (см. Транспортные системы), где подвергаются β-окислению с образованием ацил-КоА (см. Потенциал покоя и потенциал действия).

Глюкоза в цитоплазме превращается в пируват путём гликолиза (см. Метаболизм липидов). Пируват транспортируется в митохондриальный матрикс, где декарбоксилируется пируватдегидрогеназным комплексом (см. Кислотно-основной баланс) с образованием ацетил-КоА.

Восстановительные эквиваленты [2 НАДН + Н + (NADH + Н + ) на молекулу глюкозы], высвобождающиеся при гликолизе, переносятся в матрикс митохондрий малатным челноком. Образующиеся из жирных кислот ацетильные остатки окисляются до CO2 в цитратном цикле (см. Фибринолиз. Группы крови).

Деградация аминокислот также приводит к ацетильным остаткам или продуктам, которые непосредственно включаются в цитратный цикл (см. Механизм действия гидрофильных гормонов). В соответствии с энергетическими потребностями клетки восстановительные эквиваленты переносятся дыхательной цепью на кислород (см.

Белки главного комплекса гисто-совместимости). При этом высвобождается химическая энергия, которая путём создания протонного градиента используется для синтеза АТФ (см. Моноклональные антитела, иммуноанализ).

В отсутствие кислорода, то есть в анаэробных условиях (на схеме справа), картина полностью меняется. Так как электронных акцепторов для дыхательной цепи не хватает, НАДН + Н + и QH2 не могут окисляться повторно.

Вследствие этого останавливается не только митохондриальный синтез АТФ, но почти весь обмен веществ в митохондриальном матриксе. Главной причиной такой остановки является высокая концентрация НАДН (NADH), ингибирующая цитратный цикл и пируватдегидрогеназу (см. Компенсаторные функции печени).

Останавливаются также процесс β-окисления и функционирование малатного челнока, зависящие от наличия свободного НАД + . Поскольку энергия уже не может быть получена за счёт деградации аминокислот, клетка становится полностью зависимой в энергетическом отношении от потребления глюкозы при гликолизе.

При этом обязательным условием является постоянное окисление образующегося НАДН + Н + . Так как этот процесс уже не может идти в митохондриях, в клетках животных, функционирующих в анаэробных условиях, пируват восстанавливается до лактата, который поступает в кровь. Процессы этого типа называют брожением (см.

Ферментация). Продукция АТФ при этих процессах незначительна: при образовании лактата возникают только 2 молекулы АТФ на молекулу глюкозы.

Для того чтобы оценить число образованных в аэробном состоянии молекул АТФ, необходимо знать так называемое P/O-соотношение, то есть молярное соотношение синтезированных АТФ (Р) и воды (O).

Во время переноса двух электронов от НАДН на O2 в межмембранное пространство транспортируются около 10 протонов и только 6 молекул убихинола (QH2). Для синтеза АТФ АТФ-синтаза нуждается в трёх ионах Н + , так что максимальное возможное Р/O-соотношение составляет примерно 3 или, соответственно, 2 (для убихинола).

Нужно, однако, учитывать, что при переходе метаболитов в матрикс и обмене митохондриального АТФ 4- на цитоплазматический АДФ 3- в межмембранном пространстве также расходуются протоны. Поэтому при окислении НАДН Р/O-соотношение скорее всего составляет 2,5, а при окислении QH2 — 1,5.

Если на основе этих величин рассчитать энергобаланс аэробного гликолиза, получается, что окисление одной молекулы глюкозы сопровождается синтезом 32 молекул АТФ.

В чем суть процесса биологического окисления? чем отличаются аэробное и анаэробное окисление? опишите ферментную систему, осуществляющую аэробное окисление в митохондриях. какие пищевые вещества необходимы для синтеза компонентов этой системы?

Биологическое окисление – это совокупность реакций окисления субстратов в живых клетках, основная функция которых – энергетическое обеспечение метаболизма.

Биологическое окисление веществ в тканях организма, как и процесс горения, сопряжено с освобождением энергии.

Установлена взаимосвязь процесса окисления с фосфорилированием АДФ: энергия, выделяющаяся при окислении питательных веществ, не только рассеивается в виде тепла, но и накапливается в молекулах АТФ.

Источник: https://pro-plavanie.ru/vidy-pryzhkov/anaerobnoe-i-aerobnoe-okislenie

Полное окисление глюкозы. Реакция окисления глюкозы

Полное окисление глюкозы сколько атф

В данной статье рассмотрим, как происходит окисление глюкозы. Углеводы представляют собой соединения полигидроксикарбонильного типа, а также их производные. Характерные признаки – наличие альдегидных или кетонной групп и не меньше двух групп гидроксильных.

По своей структуре углеводы подразделяются на моносахариды, полисахариды, олигосахариды.

Моносахариды

Моносахариды являются наиболее простыми углеводами, которые не могут быть подвергнуты гидролизу. В зависимости от того, какая группа присутствует в составе – альдегидная или кетонная, выделяют альдозы (к ним относятся галактоза, глюкоза, рибоза) и кетозы (рибулоза, фруктоза).

Олигосахариды

Олигосахариды представляют собой углеводы, которые имеют в своем составе от двух до десяти остатков моносахаридного происхождения, соединенных посредством гликозидных связей. В зависимости от количества остатков моносахаридов различают дисахариды, трисахариды и так далее. Что при окислении глюкозы образуется? Об этом будет рассказано позднее.

Полисахариды

Полисахариды представляют собой углеводы, которые содержат более чем десять моносахаридных остатков, соединенных между собой гликозидными связями. Если в составе полисахарида содержатся одинаковые моносахаридные остатки, то он называется гомополисахаридом (к примеру, крахмал). Если же такие остатки разные – то гетерополисахаридом (к примеру, гепарин).

Какое значение имеет окисление глюкозы?

Функции углеводов в организме человека

Углеводы выполняют следующие основные функции:

  1. Энергетическая. Самая главная функция углеводов, так как они служат основным источником энергии в организме. В результате их окисления удовлетворяется более половины энергетической потребности человека. В результате окисления одного грамма углеводов высвобождается 16,9 кДж.
  2. Резервная. Гликоген и крахмал являются формой накопления питательных веществ.
  3. Структурная. Целлюлоза и некоторые другие полисахаридные соединения образуют в растениях прочный остов. Также они, в комплексе с липидами и белками, являются составляющей всех клеточных биомембран.
  4. Защитная. Для кислых гетерополисахаридов отведена роль биологического смазочного материала. Они выстилают поверхности суставов, которые соприкасаются и трутся друг об друга, слизистые носа, пищеварительных путей.
  5. Антигоагулянтная. Такой углевод, как гепарин, имеет важное биологическое свойство, а именно – препятствует свертыванию крови.
  6. Углеводы представляют собой источник углерода, необходимый для синтеза белков, липидов и нуклеиновых кислот.

Для организма главным источником углеводов являются пищевые углеводы – сахароза, крахмал, глюкоза, лактоза). Глюкоза может быть синтезирована в самом организме из аминокислот, глицерина, лактата и пирувата (глюконеогенез).

Гликолиз представляет собой одну из трех возможных форм процесса окисления глюкозы. В этом процессе происходит выделение энергии, запасаемой впоследствии в АТФ и НАДН. Одна ее молекула распадается на две молекулы пирувата.

Процесс гликолиза происходит под действием разнообразных ферментативных веществ, то есть катализаторов биологической природы. Самым главным окислителем является кислород, но стоит отметить, что процесс гликолиза может осуществляться и при отсутствии кислорода. Подобный вид гликолиза называется анаэробным.

Гликолиз анаэробного типа является ступенчатым процессом окисления глюкозы. При таком гликолизе окисление глюкозы происходит не полностью. Таким образом, при окислении глюкозы образуется лишь одна молекула пирувата.

С точки зрения энергетической выгоды анаэробный гликолиз менее выгоден, чем аэробный.

Однако если в клетку поступит кислород, то может произойти превращение анаэробного гликолиза в аэробный, который представляет собой полное окисление глюкозы.

Механизм гликолиза

В процессе гликолиза происходит распад шестиуглеродной глюкозы на две молекулы трехуглеродного пирувата. Весь процесс разделен на пять подготовительных этапов и еще пять, в течение которых в АТФ запасается энергия.

Таким образом, гликолиз протекает на двух стадиях, каждая из которых делится на пять этапов.

Стадия №1 реакции окисления глюкозы

  • Первый этап. На первом этапе происходит фосфорилирование глюкозы. Активирование сахарида происходит путем фосфолирирования по шестому углеродному атому.
  • Второй этап. Происходит процесс изомеризации глюкозы-6-фосфата. На данном этапе глюкоза обращается во фруктозу-6-фосфат под действием каталитического фосфоглюкоизомераза.
  • Третий этап. Фосфорилирование фруктозы-6-фосфата. На данном этапе происходит образование фруктозо-1,6-дифосфата (называемого также альдолазой) под воздействием фосфофруктокиназы-1. Она участвует в сопровождении фосфорильной группы от аденозинтрифосфорной кислоты до молекулы фруктозы.
  • Четвертый этап.

    На данном этапе происходит расщепление альдолазы. В результате образуются две молекулы триозофосфата, в частности кетозы и эльдозы.

  • Пятый этап. Изомеризация триозофосфатов. На данном этапе происходит отправка глицеральдегид-3-фосфата на следующие этапы глюкозного расщепления.

    При этом происходит переход дигидроксиацетонфосфата в форму глицеральдегид-3-фосфата. Данный переход осуществляется под действием ферментов.

  • Шестой этап. Процесс окисления глицеральдегид-3-фосфата. На данном этапе происходит окисление молекулы и ее последующее фосфорилирование до дифосфоглицерата-1,3.
  • Седьмой этап.

    Данный этап предполагает перенос из 1,3-дифосфоглицерата фосфатной группы на АДФ. В конечном результате этого этапа образуется 3-фосфоглицерат и АТФ.

Стадия №2 – полное окисление глюкозы

  • Восьмой этап. На данном этапе осуществляется переход 3-фосфоглицерата в 2-фосфоглицерат. Процесс перехода осуществляется под действием такого фермента, как фосфоглицератмутаза. Данная химическая реакция окисления глюкозы протекает при обязательном наличии магния (Mg).
  • Девятый этап.

    На данном этапе происходит дегидратация 2-фосфоглицерата.

  • Десятый этап. Происходит перенос фосфатов, полученных в результате протекания предыдущих этапов, в ФЕП и АДФ. Осуществляется перенос на АДФ фосфоэнулпировата. Такая химическая реакция возможна при наличии ионов магния (Mg) и калия (K).

В аэробных условиях весь процесс доходит до СО2 и Н2О. Уравнение окисления глюкозы выглядит так:

С6Н12О6+ 6О2→ 6СО2+ 6Н2О + 2880 кДж/моль.

Таким образом, в клетке не происходит накопления НАДН в процессе образования из глюкозы лактата. Это означает, что такой процесс представляет собой анаэробный, и он может протекать в отсутствии кислорода. Именно кислород – конечный акцептор электронов, которые передаются НАДН в дыхательную цепь.

В процессе подсчета энергетического баланса гликолитической реакции необходимо учитывать, что каждая ступень второй стадии повторяется два раза.

Из этого можно сделать вывод о том, что на первой стадии тратится две АТФ-молекулы, а при протекании второй стадии образуется 4 АТФ-молекулы путем фосфорилирования субстратного типа.

Это значит, что в результате окисления каждой молекулы глюкозы клетка накапливает две АТФ-молекулы.

Мы рассмотрели окисление глюкозы кислородом.

Анаэробный путь глюкозного окисления

Аэробным окислением называют процесс окисления, при котором происходит выделение энергии и который протекает в присутствии кислорода, выступающего конечным акцептором водорода в цепи дыхания. Донором молекул водорода выступает восстановленная форма коферментов (ФАДН2, НАДН, НАДФН), которые образуются при промежуточной реакции субстратного окисления.

Процесс окисления глюкозы аэробного дихотомического типа представляет собой основной путь катаболизма глюкозы в человеческом организме.

Такой тип гликолиза может осуществляться во всех тканях и органах человеческого организма. Результатом этой реакции является расщепление молекулы глюкозы до воды и углекислого газа.

Выделенная энергия при этом будет аккумулирована в АТФ. Этот процесс можно условно разделить на три этапа:

  1. Процесс превращения молекулы глюкозы в пару молекул пировиноградной кислоты. Реакция происходит в клеточной цитоплазме и представляет собой специфический путь глюкозного распада.
  2. Процесс образования ацетил-КоА в результате окислительного декарбоксилирования пировиноградной кислоты. Данная реакция протекает в клеточных митохондриях.
  3. Процесс окисления ацетил-КоА в цикле Кребса. Реакция протекает в клеточных митохондриях.

На каждой стадии данного процесса образуются восстановленные формы коферментов, окисляющихся посредством ферментных комплексов дыхательной цепи. В результате образуется АТФ при окислении глюкозы.

Образование коферментов

Коферменты, которые образуются на втором и третьем этапе аэробного гликолиза, будут окисляться непосредственно в митохондриях клеток.

Параллельно с этим НАДН, которой образовался в клеточной цитоплазме при протекании реакции первого этапа аэробного гликолиза, не имеет способности к проникновению сквозь мембраны митохондрий.

Водород переносится с цитоплазматического НАДН в клеточные митохондрии посредством челночных циклов. Среди таких циклов можно выделить основной – малат-аспартатный.

Затем при помощи цитоплазматического НАДН происходит восстановление оксалоацетата в малат, который, в свою очередь, проникает в клеточную митохондрию и затем окисляется с восстановлением митохондриальной НАД. Оксалоацетат возвращается в цитоплазму клетки в виде аспартата.

Видоизмененные формы гликолиза

Протекание гликолиза дополнительно может сопровождаться выделением 1,3 и 2,3-бифосфоглицератов.

При этом 2,3-бифосфоглицерат под воздействием биологических катализаторов может возвращаться в процесс гликолиза, а затем изменять свою форму на 3-фосфоглицерат. Данные ферменты играют разнообразные роли.

К примеру, 2,3-бифосфоглицерат, находящийся в гемоглобине, способствует переходу кислорода в ткани, способствуя при этом диссоциации и понижению сродства кислорода и эритроцитов.

Заключение

Многие бактерии могут изменять формы протекания гликолиза на его различных этапах.

При этом возможно сокращение их общего количества или видоизменение этих этапов в результате воздействия различных ферментных соединений.

Некоторые из анаэробов имеют способность к другим способам разложения углеводов. Большая часть термофилов имеет всего два гликолизных фермента, в частности енолазу и пируваткиназу.

Мы рассмотрели, как протекает окисление глюкозы в организме.

Источник: https://FB.ru/article/328652/polnoe-okislenie-glyukozyi-reaktsiya-okisleniya-glyukozyi

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: