Полная совокупность наследственной информации клетки это

Содержание
  1. Цитоплазматическая наследственность. Урок 7
  2. Митохондриальные гены обычно передаются по материнской линии
  3. Гены пластид также могут передаваться на уровне одного пола
  4. Особенности внеядерной наследственности
  5. Собственно цитоплазматическая наследственность
  6. Взаимодействие ядерной и хромосомной наследственности
  7. Для чего изучается цитоплазматическая наследственность?
  8. Наследственная информация
  9. Понятие о репликации
  10. Процесс самоудвоения
  11. Этапы биосинтеза ДНК
  12. Наследственная информация: хранение и передача. Генетический код. Цепочка ДНК
  13. Что такое наследственная информация?
  14. Функции ДНК
  15. Состав нуклеиновых кислот
  16. Каков генетический код человека?
  17. Как передается генетический код?
  18. Принцип комплементарности
  19. Рнк и его виды
  20. Репарация поврежденной молекулы ДНК
  21. Почему происходят мутации?
  22. Днк — носитель наследственной информации
  23. Историческая справка
  24. Днк – передача наследственной информации
  25. Практическое применение знаний о дезоксирибонуклеиновой кислоте
  26. Уровни организации живого – урок
  27. Термины
  28. Список использованных источников

Цитоплазматическая наследственность. Урок 7

Полная совокупность наследственной информации клетки это

Нехромосомная, внеядерная, или цитоплазматическая наследственность была открыта в 1909 г. немецкими генетиками Карлом Корренсом (1864–1933) и Эрвином Бауэром (1875–1933). Э. Бауэр первым указал на хлоропласты как на генетические детерминанты изучавшегося им признака – пестролистности растений, поэтому его считают первооткрывателем пластидной наследственности.

Эрвин Бауэр — жертва репрессий, он был расстрелян в Ленинграде в 1938 г.

Митохондриальная наследственность была открыта еще через 40 лет. Французский генетик российского происхождения Борис Эфрусси (1901–1979), работая с дрожжами, в 1949 г описал неменделевское наследование признака «мелкая колония», являющегося результатом неспособности мутантных клеток к дыханию.

Подробно цитоплазматическая наследственность бала изучена Рут Сагер, которая в 60-70 гг XX века, невзирая на всеобщие насмешки, построила первую карту генов хлоропластов хламидомонады – одноклеточной зелёной водоросли.

Рут Сагер, американский генетик.
Автор фото: Gobonobo

Дрожжи Saccharomyces cerevisiae и одноклеточная зеленая водоросль Chlamydomonas reinhardii явились главными объектами для изучения цитоплазматической наследственности. Позднее к ним добавились млекопитающие – человек и мышь и некоторые «высшие» растения.

Митохондриальные гены обычно передаются по материнской линии

Митохондриальная ДНК в большинстве случаев представлена кольцевыми молекулами, лишь у немногих видов, в частности некоторых кишечнополостных, эти молекулы линейные. У животных размеры молекул мтДНК варьируют незначительно, обычная их величина – около 16 т.п.н.(тысяч пар нуклеотидов). Молекулы мтДНК грибов больше (у дрожжей Saccharomyces cerevisiae около 85 780 п.н.).

Схема митохондриального генома человека.
Shureg

В мтДНК млекопитающих и других животных 37 генов:

  • 13 генов кодируют субъединицы белков – ферментов окислительного фосфорилирования;
  • 2 гена кодируют рибосомные РНК;
  • 22 небольших гена – транспортные РНК.

Такой же набор генов присутствует в мтДНК высших растений, к нему добавляется еще ген 5S РНК. По размеру молекул мтДНК растений значительно больше, чем мтДНК животных: от 200 т.п.н. у видов капусты до 2500 т.п.н. у арбуза. Увеличение размера молекул мтДНК происходит за счет некодирующих последовательностей, кроме них в мтДНК растений включены фрагменты хлоропластной ДНК.

Строение митохондрии.
Borrow-188

Органеллы наследуются только от одного из родителей, как правило от матери.

Зигота получает равное количество генов от каждой из родительских гамет, но все свои митохондрии она получает из яйцеклетки, которая содержит гораздо больше цитоплазмы, а значит и органелл.

Наследование митохондрий по отцовской линии наблюдается гораздо реже, но оно встречается у мидий, некоторых насекомых и даже, хотя и редко, у млекопитающих. При дроблении зиготы митохондрии расходятся в бластомеры случайным образом.

В результате митохондрии в каждой клетке взрослого организма могут быть прослежены до исходной материнской.

Поскольку митохондриальные гены отвечают за синтез белков, связанных с выполнениями митохондриями функций клеточного дыхания, их мутации часто ведут к нарушениям этих функций.

Сильнее всего такие мутации проявляются в тех клетках, потребность которых в энергии велика, в мышечных и нервных. У человека известно несколько наследственных болезней, передающихся с мтДНК по линии матери. Они отличаются мышечной дистрофией, умственной отсталостью, слепотой.

Оптическая нейропатия (LHON) Лебера наследуется по материнской линии. Генетическая основа этого заболевания – мутантный аллель кодирующий NADH-дегидрогеназу.

Мутантный аллель снижает эффективность переноса электронов в цепи, уменьшая общее производство АТФ. Особенно чувствительны к снижению количества АТФ некоторые нервные клетки зрительной системы.

Это приводит к дегенерации зрительных нервов.

Способ однополого наследования называется материнским. Больная мать будет передавать её всему своему потомству, в то время как больной отец не передаст её никому. В отличие от наследования, связанного с полом, при материнском наследовании в равной степени страдают все потомки.

У растений мутации митохондриальных генов могут вызывать явление цитоплазматической мужской стерильности (ЦМС) – нарушение развития пыльцы, неспособной к оплодотворению. Такое состояние цитоплазмы обозначают буквой S.

Буквой F (фертильный) обозначают отсутствие стерильности пыльцы. Однако существует ядерный ген, способный восстанавливать нормальное состояние пыльцы. Он обозначается буквами Rf  или rf.

Ген-репрессор восстанавливает фертильность растения, но не мешает сохранению мутантных генов митохондрий, которые могут передаваться потомству.

Внеядерный генотип обозначают одной буквой, так как для цитоплазматических генов нет понятия диплоидности.

Кроме редких болезней, мутации в митохондриальных ДНК матери могут привести к некоторым случаям диабета, болезни сердца, к расстройству Альцгеймера и др.

Гены пластид также могут передаваться на уровне одного пола

Хлоропластная ДНК (хлДНК) представлена двуцепочечными кольцевыми молекулами. Их размер у высших растений варьирует от 120 до 200 т.п.н. В подавляющем большинстве случаев в этих молекулах обнаруживаются повторы противоположной ориентации длиной 20–30 т.п.н., разделенные уникальными последовательностями.

В молекулах хлДНК насчитывается около 140 генов, в число которых входят гены, обеспечивающие синтез белка в органеллах (аппарат транскрипции и трансляции), и гены белков, участвующих в процессе фотосинтеза.

Обозначения к рисунку

Строение пластид:1. наружная мембрана 2. межмембранное пространство3. внутренняя мембрана (1+2+3: оболочка)4. строма (жидкость)5. тилакоид с просветом (люменом) внутри6. мембрана тилакоида7. грана (стопка тилакоидов)8. тилакоид (ламела)9. зерно крахмала10. рибосома11. пластидная ДНК12. пластоглобула (капля жира).

Автор схемы: Эммануэль.boutet

Пластиды также обычно наследуются по линии матери, хотя в среде автофототрофов у некоторых видов наблюдается передача хлоропласт от отца или от обоих родителей при изогамии.

Так как окраска растений связана с хлоропластами, то некоторые изменения генома этих органоидов могут привести к появлению неокрашенных участков на листьях или полностью неокрашенных растений.

Полные «альбиносы» не могут расти самостоятельно, и вскоре погибают. Их можно выращивать только, привитыми на нормальные зелёные побеги.

В 1909 г Карл Корренс впервые выдвинул идею, что пластиды ответственны за передачу пестролистности ночной красавицы (Mirabilis jalapa), так как потомство показывало фенотип матери, независимо от мужского фенотипа. У ночной красавицы встречаются листья с участками белого цвета, лищёнными хлорофилла.

Если в качестве материнского берут пестролистное растение, всё потомство также имеет пёстрые листья.

Однако, если материнское растение имеет зелёные листья, а отцовское пёстрые, то всё потомство будет иметь зелёные листья.

Корренс, однако, неправильно с современной точки зрения интерпретировал наблюдаемое им явление и честь открытия собственно пластидной наследственности принадлежит Э. Бауру.

Ночная красавица (Mirabilis jalapa)
LucaLuca

По материнской линии передаётся пестролистность и у герани. А у кипрея (Epilobium) — по отцовской.

Особенности внеядерной наследственности

  • В клетке находится много митохондрий (иногда тысячи) и десятки пластид. В каждой из них несколько молекул ДНК. Значит в клетке сотни и тысячи копий митохондриальных и пластидных ДНК, а не два аллеля, как чаще бывает в ядерной.
  • Митохондрии и пластиды делятся независимо от ядра и распределяются в дочерние клетки случайным образом. Если клетка при делении по какой-то причине лишилась этих органоидов, то приобрести их она уже никак не сможет.
  • В них нет ни митоза, ни мейоза, ни кроссинговера. Это значит, что для внеядерных генов не существует тех процессов рекомбинации, которые лежат в основе менделеевских закономерностей.
  • Все зиготы получают митохондрии и пластиды только от яйцеклетки, органеллы мужских половых клеток при оплодотворении не попадают в зиготу. Митохондрии сперматозоидов находятся в жгутиках, а они при проникновении внутрь яйцеклетки отбрасываются. Это справедливо только для гетерогаметных организмов.
  • К пестролистности приводит соматическое расщепление. Значит, и при вегетативном размножении признак передастся.
  • Передаётся внеядерная ДНК от одного из полов, хотя есть и исключения.

Судить о передаче признака именно при помощи генов цитоплазмы очень сложно. Здесь нельзя полагаться только на один из критериев.

Иногда даже все признаки вместе не дают правильной картины. Самый надёжный способ — генетический анализ.

Недавно было выяснено, что существует поток генов. В ходе эволюции некоторые гены могут перемещаться из хлоропластов в митохондрии (но не наоборот), из хлоропластов и митохондрий в ядро. Именно с этим связано существование не только пластидной, но и митохондриальной пестролистности. Существуют формы пестролистности, вызываемые ядерными генами, а также вирусами.

Вирусная мозаичная пестролистность.

Собственно цитоплазматическая наследственность

В цитоплазме бактерий кроме основной ДНК находятся плазмиды – кольцевые ДНК, в клетках дрожжей в цитоплазме есть ДНК, которые обеспечивают устойчивость дрожжей к токсическим веществам.

Наследование генов гиалоплазмы нестойкое и затухает спустя несколько поколений. Например, гены, что отвечают за направление закручивания раковины(D – правозакрученная, d – левозакрученная) прудовика, находятся в гиалоплазме.

Передаются они с яйцеклеткой, а значит по материнской линии.

В клетке, помимо ядра, митохондрий и пластид, могут присутствовать и необязательные для неё генетические элементы — плазмиды, вирусоподобные частицы, эндосимбионты (бактерии или одноклеточные водоросли, например, хлорелла).

Если их присутствие сопровождается фенотипическими отличиями от обычной клетки или организма, то при гибридологическом анализе можно проследить наследование этих отличий, а значит, и наследование самого генетического элемента.

Это и есть собственно цитоплазматическая наследственность.

Наследование завитка раковины у прудовика

Взаимодействие ядерной и хромосомной наследственности

Ядерные и хромосомные гены могут взаимодействовать, приводя к более сложным случаям наследования. Большинство белков митохондрий закодировано в ядерных генах и наследуется по правилам Менделя. В митохондриях находятся гены ферментов, обеспечивающих клеточное дыхание и гены ферментов, противостоящих некоторым неблагоприятным факторам.

Такое важнейшее свойство клетки, как ее способность к фотосинтезу, определяется взаимодействием генов хромосом, структурных элементов цитоплазмы и условий внешней среды.

Для чего изучается цитоплазматическая наследственность?

  • Филогеография и штрихкодирование

Передача цитоплазматических генов по линии матери и отсутствие их явной рекомбинации позволяет использовать митохондриальные, реже пластидные ДНК для идентификации видов и построения филогенетических рядов.

Филогеография (направление эволюционной генетики) появилось в 1990-е годы. Она занимается соотнесением организмов к генеалогическим группам, родственным по женской линии. В настоящее по этому принципу время исследуются сотни популяций и десятки видов.

  • Мутации цитоплазматической мужской стерильности растений

Более чем у 150 видов растений из 20 различных семейств обнаружено явление цитоплазматической мужской стерильности (ЦМС). Она проявляется в недоразвитости тычинок и пыльников или в образовании неполноценной, абортивной пыльцы либо в ее полном отсутствии.

Мужское соцветие маиса (кукурузы).
Tyler ser Noche

Явление ЦМС широко используется в селекции растений, когда для получения гибридных семян нужно избежать самоопыления растений.

  • Митохондриальные болезни человека

С мутациями в мтДНК, и точковыми, и делециями, связан ряд заболеваний человека. Все они передаются по женской линии, хотя проявляются у лиц и женского и мужского пола. Особенностью митохондриальных мутаций является их варьирующая в ряду поколений экспрессивность.

Клетки больных обычно являются гетероплазмонами, т. е. они содержат смесь митохондрий с нормальной и мутантной ДНК. При образовании яйцеклеток происходит случайное распределение нормальных и мутантных мтДНК и их соотношение может существенно изменяться.

При увеличении дозы мутантных мтДНК симптомы заболевания усиливаются, при уменьшении – сглаживаются.

Наследственные заболевания, связанные с мутациями мтДНК, встречаются чаще, чем 1 на 10 000, т. е. оказываются достаточно распространенным явлением.

Источник: https://tvoiklas.ru/citoplazmaticheskaja-nasledstvennost-urok-7/

Наследственная информация

Полная совокупность наследственной информации клетки это

Наследственная информация – это генетическая информация, которая передается по наследству от родителей потомству. Она обеспечивает преемственность поколений и непрерывность существования биологических видов.

У всех клеточных организмов и ряда вирусов единственную, но очень важную роль носителя наследственной информации играет ДНК.

Считывание генетической информации и ее реализация в процессах биологического синтеза осуществляются посредством различных ферментных комплексов и разных молекул РНК. Однако главным компонентом– хранителем наследственной информации являются молекулы ДНК.

Это определяется тем, что двухцепочечная молекула ДНК способна к самоудвоению, обеспечивая тем самым точное воспроизведение идентичных дочерних молекул. Кроме того, ДНК служит матрицей для синтеза всех видов РНК.

Полагают, что на самых ранних этапах возникновения жизни эту функцию выполняла РНК, но позднее она перешла к ДНК.

Наследственная информация закодирована последовательностью нуклеотидов молекул ДНК (у некоторых вирусов – РНК). Она содержит сведения о строении всех ферментов (а их в природе существует около 10 тыс.), всех структурных белков и РНК клетки, а также о системах регуляции их синтеза.

Итак, именно ДНК определяет наследственность организмов, то есть воспроизводящийся в поколениях набор белков и связанных с ними признаков.

Биосинтез белков является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой – механизмом точного воспроизведения этой программы в поколениях.

Понятие о репликации

Самоудвоение, или репликация (от лат. replicatio – повторение), – это процесс самовоспроизведения макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации.

В основе этого механизма лежит ферментативный синтез ДНК на матрице ДНК или РНК на матрице РНК (у РНК-содержащих вирусов).

Важное место среди ферментов, осуществляющих этот процесс, занимает ДНК-зависимая ДНК-полимераза, или просто ДНК-полимераза.

Напомним, что перед каждым делением клетки, в интерфазе клеточного цикла, происходит самоудвоение молекул ДНК.

Процесс самоудвоения ДНК осуществляется с помощью фермента ДНК-полимеразы при участии четырех типов мономеров – дезоксирибонуклеозидтрифосфатов (дАТФ, дТТФ, дГТФ и дЦТФ), являющихся «поставщиками» и нуклеотидов для сборки новой молекулы ДНК, и необходимой для этого энергии, носителем которой служит трифосфатная группа.

Рибонуклеозидтрифосфат — АТФ (аденозинтрифосфат)

Процесс удвоения ДНК, то есть репликация, начинается с того, что двойная спираль ДНК раскручивается, а затем в определенной точке (или в нескольких точках) обе цепи под действием фермента расходятся под определенным углом, образуя активный участок Y-образной формы, перемещающийся вдоль родительской спирали ДНК, который называют репликационной вилкой. В каждом таком участке ДНК-полимераза осуществляет синтез двух новых дочерних цепей ДНК только в направлении от 5′-конца к 3′-концу (5′ → 3′).

Каждая одинарная цепь присоединяет к себе свободные нуклеотиды, имеющиеся в клетке, и достраивается по принципу комплементарности (А–Т и Г– Ц) до двойной. Таким образом, каждая полинуклеотидная цепочка, выполняя роль шаблона, или матрицы, создает новую цепь. Матрицей (от лат.

mater – основа) называют зеркальную основу печатной формы, служащей для получения стереотипных копий. По принципу «копирования с матрицы» осуществляется и репликация дочерних молекул ДНК.

В итоге вместо одной молекулы ДНК воссоздаются две молекулы точно такого же нуклеотидного состава, как и первоначальная.

Во время репликации ДНК каждая из образовавшихся двухцепочечных молекул имеет одну нить от материнской ДНК, а другую – вновь образованную – дочернюю молекулу ДНК. Сохранение одной первоначальной (материнской) нити в структуре новой молекулы ДНК получило название полуконсервативности ДНК. Вновь синтезированная молекула ДНК полностью идентична первоначальной.

Обычно репликация начинается одновременно во многих точках двухцепочечной молекулы ДНК. Место начала репликации называют точкой инициации. Длинная цепь ДНК реплицируется не вся сразу, а фрагментами. Участок между двумя точками инициации, в которых осуществляется синтез дочерних нитей, называют репликоном. Репликон является единицей репликации.

Репликон ДНК эукариотической клетки

В каждой молекуле ДНК обычно функционируют несколько репликонов. В каждом репликоне под действием перемещающегося фермента ДНК-полимеразы обе цепи расходятся, образуя вилку, разошедшиеся участки молекулы начинают выполнять роль матрицы, на которой происходит самоудвоение (репликация) ДНК.

Репликационная вилка прекращает свое движение, только когда встречает соседнюю вилку, движущуюся в противоположном направлении.

Процесс самоудвоения

В конце 1950-х годов считалось, что с помощью фермента ДНК-полимеразы каждая отделившаяся цепочка по мере перемещения репликационной вилки от одного конца к другому достраивается на основе комплементарности до новой – дочерней двойной цепи ДНК.

Однако дальнейшие исследования показали, что процесс репликации не идет так просто, поскольку две цепи в молекуле ДНК антипараллельны, а ДНК-полимераза ведет сборку биополимера только в направлении от 5′-конца к 3′-концу.

Тогда можно ожидать, что рост дочерних молекул по одной цепочке будет происходить в направлении от 5′-конца к З’-концу, а в направлении 3′ → 5′ идти не будет. Следовательно, таким путем, как полагали в 60-е годы XX века, самоудвоение молекулы происходить не может.

То, как на антипараллельной цепочке ДНК образуется дочерняя молекула, установили только в начале 70-х годов.

В настоящее время установлено, что если на одной полимерной цепи молекулы ДНК сборка дочерней спирали (направление 5′ → 3′) идет непрерывно и она постепенно удлиняется за счет добавления нуклеотидов на З’-конце, то синтез второй дочерней молекулы на антипараллельной материнской цепи тоже идет в направлении 5′ → 3′, но прерывисто и с заметным отставанием от первой. Поэтому первую, непрерывно образующуюся цепь называют ведущей, или лидирующей, а вторую – отстающей, или запаздывающей.

Репликационная вилка и образование дочерних молекул ДНК

Заметим, что из-за антипараллельности молекул ДНК образующаяся репликационная вилка оказывается асимметричной. Из двух синтезируемых дочерних цепей одна (ведущая) строится непрерывно и достаточно быстро в направлении 5′ → 3′.

Другая – прерывисто и из небольших фрагментов (фрагментов Оказаки), каждый из которых тоже наращивается в направлении 5′ → 3′, хотя в целом вся эта цепь строится на матрице от З’- к 5′-концу.

Фрагментарный способ удвоения молекулы занимает больше времени, поэтому данный процесс идет с отставанием в сравнении с репликацией первой цепочки.

Из клеток живых организмов выделено несколько ДНК-полимераз, и в разных лабораториях они получили различные наименования.

После открытия в 1958 году Артуром Корнбергом у Escherichia coli фермента, катализирующего биосинтез ДНК и названного ДНК-полимеразой I, в течение почти 10 лет считалось, что этот фермент является единственной полимеразой, принимающей участие в репликации ДНК in vitro. Но в дальнейшем оказалось, что для репликации ДНК необходимо участие нескольких ферментов.

ДНК-полимераза I не наделена способностью инициировать синтез цепей ДНК.

Одним из хорошо изученных ферментов, участвующих в стадии инициации репликации ДНК, является специфическая клеточная РНК-полимераза, названная праймазой, которая катализирует синтез первого короткого олигорибонуклеотида (от 10 до 60 нуклеотидов), то есть праймера, с которого затем начинается синтез ДНК.

Основным ферментом, катализирующим биосинтез новообразованной ДНК (ведущей и отстающей цепей), является ДНК-полимераза III, представляющая собой комплекс собственно ДНК-полимеразы (молекулярная масса около 900 тыс.) и ряда других белков.

Этапы биосинтеза ДНК

Основываясь главным образом на данных, полученных в опытах in vitro, предполагают, что условно механизм синтеза ДНК может быть подразделен на три этапа; инициацию, то есть начало, элонгацию – продолжение и терминацию – завершение (прекращение) синтеза. Каждый из этих этапов требует участия специфических ферментов и белковых факторов.

Этап I – инициация биосинтеза ДНК – является началом синтеза дочерних нуклеотидных цепей. В инициации участвует минимум восемь хорошо изученных ферментов и белков. Инициация – единственная стадия репликации ДНК, которая весьма тонко и точно регулируется, однако детальные механизмы ее до сих пор не раскрыты и в настоящее время интенсивно исследуются.

Этап II – элонгация синтеза ДНК – включает два кажущихся одинаковыми, но резко различающихся по механизму синтеза лидирующей и отстающей цепей на обеих материнских цепях ДНК.

Синтез лидирующей цепи начинается с синтеза праймера (при участии праймазы) у точки начала репликации, затем к праймеру присоединяются дезоксирибонуклеотиды под действием ДНК-полимеразы III. Далее синтез протекает непрерывно, следуя шагу репликационной вилки.

Синтез отстающей цепи, напротив, протекает в направлении, обратном движению репликационной вилки, и происходит фрагментарно.

Фрагменты всякий раз синтезируются раздельно, начиная с синтеза праймера, который может переноситься с помощью одного из белковых факторов репликации с готового фрагмента в точку старта биосинтеза последующего фрагмента противоположно направлению синтеза дочерней цепи (подобно шитью иголкой назад).

На этом участке сборка фрагментов идет при участии ДНК-полимеразы, но в направлении 5’→ 3′ (встречно). Элонгация завершается заполнением (достраиванием) освободившихся мест (брешей) комплементарными дезоксирибонуклеотидами под действием той же праймазы, объединением образовавшихся небольших фрагментов ДНК (их называют фрагментами Оказаки, по имени ученого, открывшего это явление) с помощью ДНК-лигаз и формированием дочерней цепи ДНК.

Схема сборки фрагментов отстающей цепи ДНК: 1 – антипараллельная цепь ДНК (матрица); 2 – фермент РНК-праймаза переносит начало сборки нового фрагмента; 3 – участок, собранный с помощью ДНК-полимеразы; 4 – переход праймазы на новый участок синтеза; 5 – начало синтеза дочерней ДНК

Этап III – терминация синтеза ДНК – наступает, скорее всего, когда исчерпана ДНК-матрица и трансферазные реакции (реакции переноса) прекращаются. Точность репликации ДНК чрезвычайно высока, возможна одна ошибка на 1010 трансферазных реакций, однако подобная ошибка обычоо легко исправляется за счет процессов репарации (восстановления).

Функцию раскручивания (расплетения) двойной спирали ДНК в репликационной вилке, происходящего за счет энергии гидролиза АТФ, выполняет специфический белок, названный геликазой (молекулярная масса 300 тыс.).

Образовавшиеся на определенное время одноцепочечные участки ДНК служат в качестве матрицы при репликации и стабилизируются при помощи особых белков, связывающихся с одноцепочечной ДНК (ДНК-связывающие белки) и препятствующих обратному комплементарному взаимодействию цепей ДНК (молекулярная масса 75 600). В связи с этим их иногда называют дестабилизирующими.

Дестабилизирующие белки (1) и фермент ДНК-геликаза (2) обеспечивают деспирализованность цепи ДНК в репликационной вилке

Мы привели лишь схематическое описание процесса репликации ДНК. На самом деле этот процесс очень сложен, в нем участвует множество специфических белков и различных ферментов, способствующих расплетению ДНК и предотвращению ее спутывания, скручивания, а также обеспечивающих сшивание фрагментов ДНК в целостную двойную спираль.

Имеются, кроме того, особые ферменты топоизомеразы (у прокариот одна из них названа ДНК-гиразой), которые играют особую роль в сверхспирализации, обеспечивая как репликацию, так и транскрипцию ДНК.

Эти ферменты наделены способностью не только создавать супервитки, но и уничтожать суперспирализацию путем сшивания образующихся разрывов или разрезания ДНК.

Наконец, открыты специальные ферменты, «редактирующие» ДНК, то есть осуществляющие вырезание и удаление ошибочно включенных нуклеотидов или репарирующие повреждения ДНК, вызванные физическими или химическими факторами (рентгеновское излучение, УФ-лучи, химический мутагенез и др.).

Из приведенного неполного перечня участников репликации ДНК можно понять, каким образом осуществляется этот процесс и какова его сложность.

Таким образом, процесс репликации ДНК характеризуется рядом принципиальных особенностей. Среди них: 1) комплементарность оснований и матричный характер синтеза; 2) полуконсервативность; 3) антипараллельность; 4) прерывистость синтеза; 5) точность копирования генетического кода; б) полная идентичность дочерних молекул материнской молекуле ДНК.

Источник: https://blgy.ru/genetic-code/

Наследственная информация: хранение и передача. Генетический код. Цепочка ДНК

Полная совокупность наследственной информации клетки это

После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли нуклеиновые кислоты в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке.

Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически.

Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям дезоксирибонуклеиновой кислоты относятся хранение наследственной информации и ее передача потомству.

Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий.

Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка.

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая – от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом – №17. А самая большая пара – 1 и 3.

Диаметр двойной спирали у человека – всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации – находятся внутри каждой клетки организма.

Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку.

После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов – половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах.

Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов.

Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Спирали ДНК состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э.

Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице.

И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин – с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

Рнк и его виды

Что такое наследственная информация? Это последовательность нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК), или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны. Их причина – это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

Источник: https://FB.ru/article/352796/nasledstvennaya-informatsiya-hranenie-i-peredacha-geneticheskiy-kod-tsepochka-dnk

Днк — носитель наследственной информации

Полная совокупность наследственной информации клетки это

ДНК (Дезоксирибонуклеиновая кислота) – это макромолекула, являющаяся носителем информации об организме от одного поколения к другому.
Белки образуют полипептидные цепи, информацию о которых хранит дезоксирибонуклеиновая кислота.

Каждый участок, в котором заключаются данные о такой цепи, называется геном. Молекулы дезоксирибонуклеиновой кислоты, находящиеся внутри одной клетки, в своей совокупности представляют носитель генетической информации обо всём организме.

Историческая справка

Открытие молекулы дезоксирибонуклеиновой кислоты было произведено ещё в 1869 году. Швейцарский физиолог Фридрих Мишер обнаружил вещество, которое назвал нуклеин. Значимость великого открытия поначалу не была оценена, как полагается.

Длительное время считалось, что нуклеин есть не что иное, как запасник фосфора.
С приходом XX века изучение дезоксирибонуклеиновой кислоты продолжалось, однако, в начале века подавляющее большинство учёных этой области даже не предполагало, что ДНК является передатчиком информации.

По их мнению, слишком проста и повторяющаяся у неё структура, чтобы нести подобную сложную функцию.

Научный прорыв случился в 1944 году, когда было определено, что ДНК имеет большую значимость для науки.

Учёный Освальд Эйвери вместе с двумя коллегами Маклином Маккарти и Колином Маклауд занимались исследованиями дезоксирибонуклеиновой кислоты, результатом их деятельности стала публикация в журнале «The Journal of Experimental Medicine».

Статья доказывала, что дезоксирибонуклеиновая кислота представляет собой «материал» генов и является носителем наследственной информации.

Днк – передача наследственной информации

Как только было доказано, что дезоксирибонуклеиновая кислота есть не что иное, как генокод организма и имеет важную роль как носитель информации, исследования учёных-биологов взяли правильное направление. Началось стремительное изучение цепей и взаимосвязей.

До 1950 года удалось определить только то, что молекула ДНК состоит из цепей нуклидов, но как они между собой соединены и сколько их, оставалось неизвестным.
Только в 1953 году было определено, что внутри молекулы дезоксирибонуклеиновой кислоты существуют взаимосвязи азотистых оснований разных типов. Сама молекула ДНК была представлена, как двойная спираль.

Передачу наследственной информации дезоксирибонуклеиновой кислотой можно сравнить с тем, как люди обмениваются информацией. У нас это происходит с использованием звуков и букв. У ДНК с применением оснований азотистой кислоты.
Каждая спираль макромолекулы состоит из азотистых оснований, рибоксиновой кислоты и остатка фосфорной кислоты.

Звенья могут иметь различную последовательность, главной их характеристикой является то, что все они тесно связаны с последовательностью второй спирали. Это свойство получило название правило комплементарности.
Двойная спираль полимерных цепей похожа на верёвочную лестницу. Каждая ступень в ней – это нуклеотидные пары, которые связывает сахарофосфатный состав.

Главным отличием молекулы ДНК друг от друга является последовательность пар. Но именно это расположение и является кодом, согласно которому определяется порядок производимых клетками белков.

Сравнивая процесс с человеческим типом носителем и передачи информации, можно сказать, что в данном случае мы имеем дело с бедным алфавитом, в котором наличествует всего четыре буквы.

Все слова, а также предложения складываются из них.
Расшифровка кода была осуществлена тогда, когда люди поняли, что код не является двоичным, а триплетный.

Каждая аминокислота в белке абсолютно соответствует последовательности трёх нуклеотидов в РНК и ДНК, кодонов.

Дезоксирибонуклеиновой кислотой передаёт информацию два раза: при делении на две части и при кодировании белка. Таким образом, данные передаются только что образованной клетке. В процессе репликации ДНК снимает с себя копию.

Происходит разделение нитей, связывающих спираль и выстраивание новой комплементарной цепи. В каждой из двух вновь образованных клеток имеются по идентичной копии дезоксирибонуклеиновой кислоты.

Таким образом, сохраняется вся генетическая информация.

Практическое применение знаний о дезоксирибонуклеиновой кислоте

Знания, полученные о молекуле ДНК, сложно переоценить. Практическое их применение имеет для человечества огромное значение. По сути, открыв тайну макромолекулы, люди получили доступ к генам.

Развитие науки о дезоксирибонуклеиновой кислоте открывает неограниченные возможности для биологии и медицины.
Знания о наследственной природе дезоксирибонуклеиновой кислоты нашли практическое применение в генной инженерии, которая оказывает влияние на развитие клинической медицины.

Методы, построенные на основе изучения рекомбинантных ДНК, открыли новые возможности изучения наследственных болезней.
Используемые технологии рекомбинантных молекул ДНК стало революционным для науки, изучающей живые клетки.

Перед медициной и промышленностью открылись новые пути к получению в достаточном количестве тех белков, которые прежде получались в ограниченных количествах, либо не получались вообще.

Увы, исследования далеки до своего завершения. Однако, на сегодняшний день сделано много. Это методы клонирования ДНК и генная инженерия. Настоящим прорывом медицины стала технология рекомбинантных ДНК.

Она позволяет производить пересадку генетического материала из одного организма в другой.

Направление находится в процессе изучения и развития, однако, некоторые его находки уже активно применяются на практике.

Источник: https://testdnk.pro/informacia/dnk-nositel-nasledstvennoj-informacii.html

Уровни организации живого – урок

Полная совокупность наследственной информации клетки это

Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.

Молекулярно-генетический (молекулярный) уровень

Биологическая система

Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)

Элементарные процессы

Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.

Характеристика

На этом уровне элементарной структурной единицей является ген (участок ДНК), а ДНК – носитель наследственной информации у всех живых организмов. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ превращение энергии, передача наследственной информации.

Субклеточный уровень

Биологическая система

Органоиды

Элементарные процессы

Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.

Характеристика

На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.

Клеточный уровень

Биологическая система

Клетка

Элементарные процессы

Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.

Характеристика

Клетка – основная струк­турно-функциональная единица всех жи­вых организмов, элементарная живая система, единица размножения и развития всех живых организмов, обитающих на Земле. Минимальная единица, которой присущи все свойства живого.

Тканевый уровень

Биологическая система

Ткань

Элементарные процессы

Регенерация ткани, дифференциация, специализация. и т.д.

Характеристика

Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов

Органный уровень

Биологическая система

Орган

Элементарные процессы

Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.

Характеристика

Орган – структурно-функциональное объединение нескольких типов тканей.

Организменный уровень

Биологическая система

Особь

Элементарные процессы

Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.

Характеристика

Организм – целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных на выполнении различных функций.

Популяционно-видовой уровень

Биологическая система

Популяция и вид

Элементарные процессы

Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.

Характеристика

Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.

Биоценотический (экосистемный, биогеоценотический) уровень

Биологическая система

Биоценоз

Элементарные процессы

Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.

Характеристика

Экосистема – биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними

Биосферный уровень

Биологическая система

Биосфера

Элементарные процессы

Глобальный круговорот веществ и превращение энергии и т.д.

Характеристика

Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Термины

Отработать термины по теме “Уровни организации живого”

Список использованных источников

ЕГЭ. Биология. Пошаговая подготовка / Ю.А. Садовниченко. — Москва : Эксмо, 2015. — 320 с

Биология (Общие закономерности). 10 кл. : учебное пособие к элективному курсу для общеобразоват. организаций (углублённый уровень) / А.А. Вахрушев, М.А. Корженевская, А.П. Пуговкин, Н.А. Пуговкина, П.М. Скворцов. – М . : Баласс, 2015. – 400 с.: ил. (Образовательная система «Школа 2100»).

7285

Источник: http://biologyonline.ru/index.php/zadaniya-s-razvernutym-otvetom/2-uncategorised/90-urovni-organizatsii-zhivogo-urok

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: