Полимодальные нейроны

Содержание
  1. Нервная ткань: нейроны и глиальные клетки (глия)
  2. Нейроны
  3. Виды нейронов
  4. Нервные волокна и нервы
  5. Список черепно-мозговых нервов с обозначением доминирующих волокон
  6. Функции нейронов: как работают и какую задачу выполняют
  7. Основные понятия о функциях нейронов
  8. Функции нейронов
  9. Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?
  10. Советы: как улучшить функции нейронов
  11. Могут ли нейроны умереть?
  12. Выводы о нейронных функциях
  13. Типы нейронов: характеристики и функции
  14. Различные виды нейронов: большое разнообразие
  15. Структура нейрона
  16. Типы нейронов
  17. 1. По нервно-импульсной передаче
  18. 1.1. Пресинаптический нейрон
  19. 1.2. Постсинаптический нейрон
  20. 2. По своей функции
  21. 2.1. Сенсорные нейроны
  22. 2.2. Моторные нейроны
  23. 2,3. интернейронов
  24. 3. По направлению нервного импульса
  25. 3.1. Афферентные нейроны
  26. 3.2. Эфферентные нейроны
  27. 4. По типу синапса
  28. 4.1. Возбуждающие нейроны
  29. 4.2. Ингибирующие нейроны
  30. 4,3. Модулирующие нейроны
  31. 5. По данным нейромедиатора
  32. 5.1. Серотонинергические нейроны
  33. 5.2. Дофаминергические нейроны
  34. 5.3. ГАМКергические нейроны
  35. 5.4. Глутаматергические нейроны
  36. 5.5. Холинергические нейроны
  37. 5.6. Норадренергические нейроны
  38. 5,7. Вазопресинергические нейроны
  39. 5,8. Окситоцинергические нейроны
  40. 6. По своей внешней морфологии
  41. 6.1. Униполярные или псевдоуниполярные нейроны
  42. 6.2. Биполярные нейроны
  43. 6.3. Многополярные нейроны
  44. 7. Другие типы нейронов
  45. 7.1. Зеркальные нейроны
  46. 7.2. Пирамидальные нейроны
  47. 7.3. Нейроны Пуркинье
  48. 7.4. Нейроны сетчатки
  49. 7,5. Обонятельные нейроны
  50. 7,6. Нейроны в корзине или корзине
  51. В заключение
  52. Библиографические ссылки:
  53. Строение, классификация и функции нейрона (нервная клетка). Анатомия. (October 2020)
  54. Основные понятия о функциях нейронов
  55. Функции нейронов
  56. Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?
  57. Советы: как улучшить функции нейронов
  58. Могут ли нейроны умереть?
  59. Выводы о нейронных функциях

Нервная ткань: нейроны и глиальные клетки (глия)

Полимодальные нейроны

В курсе лекций «Анатомия ЦНС для психологов» я уже писала об анатомической терминологии и нервной системе. В этой статье я решила рассказать о нервной ткани, ее особенностях, видах нервной ткани, классификациях нейронов, нервных волокон, типах глиальных клеток и многом другом.

Хочу напомнить, что все статьи в разделе «Анатомия ЦНС», я пишу именно для психологов, учитывая их программу подготовки. Я по своему опыту помню, как сложно и непривычно было изучать подобные темы во время своей учебы. Поэтому я стараюсь изложить весь материал наиболее понятно.

Для начала, я советую посмотреть небольшое видео, в котором рассказывается о различных тканях человека. Но нас будет интересовать именно нервная ткань. В более красочном и наглядном виде вам будет легче усвоить основы, а потом вы сможете расширить свои знания.

Основной тканью, из которой образована нервная система является нервная ткань, которая состоит из клеток и межклеточного вещества.
Ткань — это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям.

Нервная ткань имеет эктодермальное происхождение. Нервная ткань отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество. Межклеточное вещество является производной глиальной клетки, состоит из волокон и аморфного вещества.

Функцией нервной ткани является обеспечение получения, переработки и хранения информации из внешней и внутренней среды, а также регуляция и координация деятельности всех частей организма.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции ЦНС. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в соотношении 10:1 соответственно.

Каждый нейрон имеет расширенную центральную часть: тело — сому и отростки — дендриты и аксоны. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.

Отростки могут быть длинными и короткими. Длинные отростки нейронов называются нервными волокнами. Большинство дендритов (дендрон — дерево) короткие, сильно ветвящиеся отростки. Аксон (аксис — отросток) чаще длинный, мало ветвящийся отросток.

Нейроны

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

Каждый нейрон имеет только 1 аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки — коллатерали. Окончания аксона, как правило, ветвятся, и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным (аксонным) холмиком.

По отношению к отросткам сома нейрона выполняет трофическую функцию, регулируя обмен веществ. Нейрон обладает признаками, общими для всех клеток: имеет оболочку, ядро и цитоплазму, в которой находятся органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и т.д.).

Кроме того, в нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.

Кроме того, отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии. Взрослые нейроны не способны к делению.

Виды нейронов

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.

По количеству отростков (по строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются;
2.

Псевдоуниполярные нейроны (ложноодноотростчатые), такие нейроны имеют Т-образный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3. Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон (т.е.

2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4. Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е.

много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза.

Вместо них в организме человека имеются псевдоуниполярные клетки, у которых единственный аксон разделяется на 2 ветви сразу же после выхода из тела клетки.

Биполярные нейроны имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны составляют большинство клеток нервной системы.

По выполняемым функциям нейроны бывают:
1. Афферентные (рецепторные, чувствительные) нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях (спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.

Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.

Пример чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи.

2. Эфферентные (эффекторные, секреторные, двигательные) нейроны регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы.

Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

Пример двигательных нейронов: мотонейрон спинного мозга.

Тела чувствительных нейронов лежат вне спинного мозга, а двигательные нейроны лежат в передних рогах спинного мозга.

3. Вставочные (контактные,интернейроны, ассоциативные, замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.

Цепь нейронов из чувствительного, вставочного и эфферентного получила название рефлекторной дуги. Вся деятельность нервной системы, по определению И.М. Сеченова, носит рефлекторный характер («рефлекс» – обозначает отражение).

По эффекту, который нейроны оказывают на другие клетки:
1. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.

Нервные волокна и нервы

Нервные волокна — это покрытые глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. По ним нервные импульсы могут передаваться на большие расстояния (до метра).

Классификация нервных волокон основана на морфологических и функциональных признаках.

По морфологическим признакам различают:
1. Миелинизированные (мякотные) нервные волокна — это нервные волокна, имеющие миелиновую оболочку;
2. Немиелинизированные (безмякотные) нервные волокна — это волокна, не имеющие миелиновой оболочки.

По функциональным признакам различают:
1. Афферентные (чувствительные) нервные волокна;
2. Эфферентные (двигательные)нервные волокна.

Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв — это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение.

Различают спинномозговые нервы, связанные со спинным мозгом (31 пара), и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы (см. таблицу ниже).

В чувствительных нервах преобладают афферентные волокна, в двигательных — эфферентные, в смешанных — количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов.

Список черепно-мозговых нервов с обозначением доминирующих волокон

I пара — обонятельные нервы (чувствительные);II пара — зрительные нервы (чувствительные);III пара — глазодвигательные (двигательные);IV пара — блоковые нервы (двигательные);V пара — тройничные нервы (смешанные);VI пара — отводящие нервы (двигательные);VII пара — лицевые нервы (смешанные);VIII пара —  вестибуло-кохлеарные нервы (чувствительные);IX пара — языкоглоточные нервы (смешанные);X пара — блуждающие нервы (чувствительные);XI пара — добавочные нервы (двигательные);

XII пара — подъязычные нервы (двигательные).

Источник: https://impsi.ru/anatomy-of-the-cns/nervnaya-tkan-nejrony-i-glialnye-kletki-gliya/

Функции нейронов: как работают и какую задачу выполняют

Полимодальные нейроны

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

Функции нейронов

Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это — действия нейронов.

Как мы понимаем, что это холодное, а это — горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны.

В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя Общий когнитивный тест CogniFit

Нейроны — это клетки, формирующие нервную систему, другими словами, нервные клетки. Самыми главными функциями нейронов являются получение информации и её передача посредством электрических импульсов по всем каналам коммуникации, по всей нервной системе. Для того, чтобы нейроны могли осуществлять свои функции, им необходимы следующие части, образующие структуру нейрона:

  • Сома: тело или главная часть нейрона. В ней находится ядро.
  • Аксоны: речь идёт о нервном волокне, через которое электрические импульсы передаются другим нейронам. В наиболее отдалённой от сомы части этого волокна находится много нервных окончаний, которые одновременно связываются с огромным количеством нейронов.
  • Дендриты:разветвлённые отростки нейрона, через которые нейрон получает информацию от других нейронов.

Форма, посредством которой могут между собой общаться нейроны (отправлять информацию и получать её от других нейронов) называется Синапс. Речь идёт о процессе, при котором аксон одного нейрона передаёт информацию дендритам другого нейрона (канал между двумя частями нейронов называют «синаптическая щель»).

Функции нейронов

Наше тело выполняет много задач и обрабатывает огромный объем информации, идущей от мозга через всю нервную систему. Вследствие этого нейронам необходимо иметь специализацию. По этой причине, несмотря на то, что основной функцией нейронов является получение и передача информации, существуют различные типы нейронов, различающихся по:

Функциям нейронов:

  • Моторные или эфферентные: отвечают за передачу информации в виде электрических импульсов от центральной нервной системы к мышцам или железам.
  • Чувствительные или афферентные: нейроны, которые связывают наш мозг с внешним миром. Это нейроны, которые получают информацию от различных чувств, ощущений, таких как боль, давление, температура… Включая более специализированные нейроны, «говорящие» о вкусах и запахах.
  • Промежуточные/интеркалярные или ассоциативные нейроны: нейроны, обеспечивающие коммуникации между афферентными и эфферентными нейронами.

Структуре:

  1. Униполярные: нейроны, обладающие только одним раздваивающимся отростком, выходящим из сомы, и работающие одновременно как дендрит и как аксон (вход и выход). В своём большинстве это сенсорные нейроны.
  2. Биполярные нейроны: имеют два отростка, один из которых работает как дендрит (вход), а другой как аксон (выход). Этот вид нейронов находится в сетчатке, улитке или передней части ушного лабиринта, вестибулярной системе и обонятельной области слизистой оболочки носа.
  3. Мультиполярные: этот вид нейронов преобладает в нашей центральной нервной системе. Обладают большим количеством входных отростков (дендритов) и только одним выходным (аксон). Находятся в головном или спинном мозге.

Типу нейротрансмиттера (нейромедиатора), усиливающего функцию нейрона:

  1. Серотонинергические — производят Серотонин (связан с настроением).
  2. Дофаминергические — производят Дофамин (связан с удовольствием).
  3. ГАМК-ергические — производят ГАМК (основной тормозной нейротрансмиттер).
  4. Глутаматергические — производят Глутамат (основной возбуждающий нейротрансмиттер, связанный с памятью и воспоминаниями).
  5. Холинергические — производят Ацетилхолин (Нейромедиатор, широко распространённый в Центральной Нервной Системе. Многосторонни).
  6. Норадренергические — производят Норадреналин/норэпинефрин (действует как нейротрансмиттер и как гормон. Связан с увеличением сердечного ритма и кровяным давлением).
  7. Вазопрессинергические — производят Вазопрессин (играет ключевую роль в гомеостатическом регулировании жидкости, глюкозы и солей в крови).
  8. Окситоцинергические — производят Окситоцин (связан с любовью, романтическими отношениями и сексуальным поведением…).

Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?

Ранее считалось, что на протяжении человеческой жизни новые нейроны в мозге не образуются. Однако группа учёных Каролинского Медицинского Института (Швеция) провела эксперимент с использованием углерода-14, который показал, что в человеческом мозге, а именно, в Гиппокампе, ежедневно могут рождаться 1400 клеток. Однако с возрастом эта цифра сокращается.

Этот процесс формирования нейронов называется Нейрогенез. Тот факт, что даже в зрелом возрасте возникают новые нейроны, играет важнейшую роль для их функций, а также пластичности и способности мозга адаптироваться к новым ситуациям.

Советы: как улучшить функции нейронов

Как и всегда, здоровые привычки играют важную роль в оптимальном развитии функций нейронов. Наш мозг благодарит нас за заботу о теле. Как говорится, «в здоровом теле — здоровый дух». Что мы можем сделать, чтобы улучшить пластичность мозга и нейрогенез?

  1. Спать, отдыхая: необязательно спать строго 8 часов. У каждого из нас свой ритм сна, и есть люди, для которых вполне достаточно спать 7 или 7,5 часов. Однако важно, чтобы сон был восстанавливающим.
  2. Использовать умеренные физические нагрузки и стимуляции: нейрогенез происходит для адаптации к окружающему миру. Это связано с преодолением трудностей для достижения наших целей, что, в свою очередь, задействует наши навыки принятия решений.
  3. Избегать чрезмерного стресса: небольшой уровень стресса полезен, но всегда надо знать когда мы «переходим черту».
  4. Заниматься сексом: это отличный способ стимуляции и борьбы со стрессом, а также физическая нагрузка.
  5. Делать упражнения для мозга: CogniFit («КогниФит») является лидером среди программ по когнитивной стимуляции, все упражнения можно выполнять онлайн с помощью любого устройства — компьютера, телефона, планшета. Нейропсихологи и нейроучёные разработали увлекательные упражнения в виде простых игр, с помощью которых можно профессионально «тренировать» основные функции головного мозга. Эта программа была высоко оценена научным сообществом и в настоящее время применяется в различных медицинских учреждениях, школах, колледжах и университетах по всему миру. Откройте для себя этот простой инструмент, с помощью которого каждый сможет профессионально протестировать и потренировать свой мозг.

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз): В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости — с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического теста CogniFit на депрессию прямо сейчас!

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны — это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в гиппокампе также меняется, благодаря нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

В статье есть ссылки на другие материалы, в которых можно подробнее прочитать информацию по той или иной теме. Если вам интересна тема Нейрогенеза, рекомендую также прочитать вот эту интересную статью о том, как предотвратить деменцию.

Будем признательны за ваши вопросы и комментарии.

Перевела с испанского Анна Иноземцева

Psicóloga Sanitaria especialista en Psicología clínica. Enamorada de las relaciones entre pensamientos, emociones y comportamiento humano. Descubramos conocimientos compartiendo información

«Cada uno es dueño exclusivo de sus pensamientos, hasta que decide compartirlos a través de sus conductas»

This post is also available in: Испанский Французский Немецкий

Этот сайт использует Cookies для улучшения вашего онлайн-опыта. Продолжая использовать этот сайт, вы соглашаетесь на использование файлов cookie. знать больше.

Источник: https://blog.cognifit.com/ru/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D0%BD-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BE%D0%B2/

Типы нейронов: характеристики и функции

Полимодальные нейроны

Нейроны принято называть основными единицами, которые вместе образуют нервную систему и мозг, который в нее входит, но правда в том, что существует не только один класс этих микроскопических структур: существует множество типы нейронов с различными формами и функциями.

Различные виды нейронов: большое разнообразие

Организм человека состоит из 37 триллионов клеток.

Большую часть клеток нервной системы составляют глиальные клетки которые на самом деле являются наиболее распространенными в нашем мозгу, и мы с любопытством склонны забывать, но остальное разнообразие соответствует так называемым нейронам.

Эти нервные клетки, которые принимают и испускают электрические сигналы, взаимосвязаны, образуя коммуникационные сети, которые передают сигналы через различные области нервной системы через нервные импульсы.

Человеческий мозг имеет примерно от 80 до 100 миллиардов нейронов , Нейронные сети отвечают за выполнение сложных функций нервной системы, то есть, что эти функции не являются следствием специфических характеристик каждого отдельного нейрона.

А поскольку в нервной системе так много дел, а функционирование различных частей мозга настолько сложно, этим нервным клеткам также приходится приспосабливаться к этому множеству задач.

Как они это делают? по специальности и деление на разные типы нейронов.

Но прежде чем мы начнем исследовать разнообразие классов нейронов, давайте посмотрим, что у них общего: их базовая структура.

Структура нейрона

Когда мы думаем о мозге, на ум приходит образ нейронов. Но не все нейроны одинаковы, потому что есть разные типы. Теперь, В целом его структура состоит из следующих частей: :

  • сома : Также называется сома perikaryonявляется клеточным телом нейрона. Это место, где находится ядро, и из которого рождаются два типа расширений.
  • дендриты Дендриты – это расширения, которые происходят от сомы и выглядят как ветви или кончики. Они получают информацию из других ячеек.
  • аксон Аксон – это удлиненная структура, которая начинается от сомы. Его функция заключается в передаче нервного импульса от сомы к другому нейрону, мышце или железе тела. Аксоны обычно покрыты миелином, веществом, которое обеспечивает более быстрое движение нервного импульса.

Вы можете узнать больше о миелине в нашей статье: «Миелин: определение, функции и характеристики»

Одна из частей, на которые делится аксон и которая отвечает за передачу сигнала другим нейронам, называется кнопкой терминала. Информация, которая передается от одного нейрона к другому, передается через синапс, который является соединением между терминальными кнопками излучающего нейрона и дендритом ячейки-получателя.

Типы нейронов

Существуют разные способы классификации нейронов, и они могут быть установлены на основе разных критериев.

1. По нервно-импульсной передаче

Согласно этой классификации, существует два типа нейронов:

1.1. Пресинаптический нейрон

Как уже говорилось, союз двух нейронов – это синапс. Ну, пресинаптический нейрон – это нейромедиатор, который содержит и выпускает его в синаптическое пространство для передачи другому нейрону .

1.2. Постсинаптический нейрон

В синаптическом соединении это нейрон, который получает нейротрансмиттер .

2. По своей функции

Нейроны могут иметь различные функции в нашей центральной нервной системе, поэтому они классифицируются следующим образом:

2.1. Сенсорные нейроны

Они посылают информацию от сенсорных рецепторов в центральную нервную систему (ЦНС) , Например, если кто-то кладет кусок льда в вашу руку, сенсорные нейроны отправляют сообщение из вашей руки в вашу центральную нервную систему, которое интерпретирует лед как холодный.

2.2. Моторные нейроны

Этот тип нейронов посылает информацию от ЦНС к скелетным мышцам (соматические мотонейроны), для осуществления движения или к гладким мышцам или ганглиям ЦНС (висцеральные мотонейроны).

2,3. интернейронов

Интернейрон, также известный как интегративный или ассоциативный нейрон, соединяется с другими нейронами, но никогда с сенсорными рецепторами или мышечными волокнами , Он отвечает за выполнение более сложных функций и действует в рефлекторных действиях.

3. По направлению нервного импульса

В зависимости от направления нервного импульса нейроны могут быть двух типов:

3.1. Афферентные нейроны

Этот тип нейронов являются сенсорными нейронами. Они получают это имя, потому что они транспортируют нервный импульс от рецепторов или органов чувств к центральной нервной системе .

3.2. Эфферентные нейроны

Это моторные нейроны. Они называются эфферентными нейронами, потому что они транспортируют нервные импульсы из центральной нервной системы к эффекторам, таким как мышцы или железы .

  • Узнайте больше: «Через афферент и через эфферент: типы нервных волокон»

4. По типу синапса

В зависимости от типа синапса, мы можем найти два типа нейронов: возбуждающие и тормозные нейроны. Около 80 процентов нейронов являются возбуждающими. Большинство нейронов имеют тысячи синапсов на своей мембране, и сотни из них активны одновременно.

Является ли синапс возбуждающим или ингибирующим, зависит от типа или типов ионов, которые направляются в постсинаптические потоки, которые, в свою очередь, зависят от типа рецептора и нейротрансмиттера, участвующих в синапсе (например, глутамата или ГАМК)

4.1. Возбуждающие нейроны

Это те, в которых результат синапсов вызывает возбуждающий ответ то есть увеличивает вероятность создания потенциала действия.

4.2. Ингибирующие нейроны

Есть те, в которых результат этих синапсов вызывает тормозной ответ то есть это уменьшает возможность создания потенциала действия.

4,3. Модулирующие нейроны

Некоторые нейротрансмиттеры могут играть роль в синаптической передаче, отличную от возбуждающей и тормозящей, потому что они не генерируют передающий сигнал, а скорее регулируют его.

Эти нейромедиаторы известны как нейромодуляторы и его функция заключается в модулировании реакции клетки на главный нейромедиатор , Они обычно устанавливают аксо-аксональные синапсы, и их основными нейротрансмиттерами являются дофамин, серотонин и ацетилхолин

5. По данным нейромедиатора

В зависимости от нейромедиатора, который высвобождают нейроны, они получают следующее имя:

5.1. Серотонинергические нейроны

Этот тип нейронов Они передают нейротрансмиттер под названием серотонин (5-HT) что связано, среди прочего, с состоянием ума.

  • Статья по теме: «Серотонин: узнайте, как этот гормон воздействует на ваше тело и разум»

5.2. Дофаминергические нейроны

Дофаминергические нейроны передают дофамин , Нейромедиатор, связанный с зависимым поведением.

  • Вы можете быть заинтересованы: «Дофамин: 7 основных функций этого нейромедиатора»

5.3. ГАМКергические нейроны

ГАМК является основным тормозящим нейромедиатором. ГАМКергические нейроны передают ГАМК.

  • Статья по теме: «ГАМК (нейротрансмиттер): что это такое и какую роль он играет в мозге»

5.4. Глутаматергические нейроны

Этот тип нейронов передает глутамат , Основной возбуждающий нейромедиатор.

  • Может быть, вы заинтересованы: «Глутамат (нейротрансмиттер): определение и функции»

5.5. Холинергические нейроны

Эти нейроны передают ацетилхолин , Среди многих других функций ацетилхолин играет важную роль в кратковременной памяти и обучении.

5.6. Норадренергические нейроны

Эти нейроны ответственны за передачу норадреналина (норадреналина) Катехоламин с двойной функцией, как гормон и нейромедиатор.

5,7. Вазопресинергические нейроны

Эти нейроны ответственны за передачу вазопрессина Также называется химическим веществом моногамии или верности.

5,8. Окситоцинергические нейроны

Передача окситоцина, другого нейрохимического вещества, связанного с любовью , Он получает название гормона объятий.

  • Узнайте больше об окситоцине в нашем посте: «Химия любви: очень сильное лекарство»

6. По своей внешней морфологии

По количеству расширений, которые имеют нейроны, они классифицируются как:

6.1. Униполярные или псевдоуниполярные нейроны

Это нейроны, которые имеют одно расширение двойного значения, которое покидает сому, и действует как дендрит и как аксон (вход и выход). Обычно это сенсорные нейроны, то есть афферентные .

6.2. Биполярные нейроны

У них есть два цитоплазматических расширения (расширения), которые покидают сому. Один действует как дендрит (вход), а другой действует как аксон (выход) , Они обычно расположены в сетчатке, улитке, преддверии и обонятельной слизистой оболочке

6.3. Многополярные нейроны

Они наиболее распространены в нашей центральной нервной системе. Они имеют большое количество входных расширений (дендритов) и одного выхода (аксона) , Они находятся в головном или спинном мозге.

7. Другие типы нейронов

В зависимости от расположения нейронов и в соответствии с их формой они классифицируются как:

7.1. Зеркальные нейроны

Эти нейроны были активированы при выполнении действия и при просмотре другого человека, выполняющего действие. Они необходимы для обучения и подражания.

  • Знайте больше: «Зеркальные нейроны и их значение в нейрореабилитации»

7.2. Пирамидальные нейроны

Они расположены в коре головного мозга, гиппокампе и миндалине. , Они имеют треугольную форму, поэтому и получают это имя.

7.3. Нейроны Пуркинье

Они находятся в мозжечке и их так называют, потому что их первооткрывателем был Ян Евангелиста Пуркине. Эти нейроны разветвляются, образуя сложное дендритное дерево, и выровнены, как кусочки домино, расположенные друг напротив друга.

7.4. Нейроны сетчатки

Они являются типом восприимчивого нейрона Они принимают сигналы от сетчатки в глазах.

7,5. Обонятельные нейроны

Это нейроны, которые посылают свои дендриты в обонятельный эпителий где они содержат белки (рецепторы), которые получают информацию от отдушек. Их немиелинизированные аксоны синапсов в обонятельной луковице головного мозга.

7,6. Нейроны в корзине или корзине

Они содержат одно большое апикальное дендритное дерево , который разветвляется как корзина. Нейроны в корзине находятся в гиппокампе или мозжечке.

В заключение

В нашей нервной системе существует большое разнообразие типов нейронов, которые адаптируются и специализируются в соответствии с их функциями, так что все психические и физиологические процессы могут развиваться в реальном времени (с головокружительной скоростью) и без задержек.

Энцефалон – это очень хорошо смазанная машина именно потому, что и классы нейронов, и части мозга очень хорошо выполняют функции, к которым они адаптируются, хотя это может быть головной болью, когда дело доходит до их изучения и понимания.

Библиографические ссылки:

  • Джуришич М., Антич С., Чен В., Зечевич Д. (2004). Отображение напряжения от дендритов митральных клеток: затухание EPSP и пусковые зоны спайков. J Neurosci 24 (30): 6703-14.
  • Герни, К. (1997). Введение в нейронные сети. Лондон: Routledge.
  • Solé, Ricard V.; Манрубия, Сюзанна С. (1996). 15. Нейродинамика. Порядок и хаос в сложных системах. Указы СКП.

Строение, классификация и функции нейрона (нервная клетка). Анатомия. (October 2020)

Источник: https://ru.yestherapyhelps.com/types-of-neurons-characteristics-and-functions-11228

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя Общий когнитивный тест CogniFit.

Общий когнитивный тест CogniFit

Нейроны – это клетки, формирующие нервную систему, другими словами, нервные клетки. Самыми главными функциями нейронов являются получение информации и её передача посредством электрических импульсов по всем каналам коммуникации, по всей нервной системе. Для того, чтобы нейроны могли осуществлять свои функции, им необходимы следующие части, образующие структуру нейрона:

  • Сома: тело или главная часть нейрона. В ней находится ядро.
  • Аксоны: речь идёт о нервном волокне, через которое электрические импульсы передаются другим нейронам. В наиболее отдалённой от сомы части этого волокна находится много нервных окончаний, которые одновременно связываются с огромным количеством нейронов.
  • Дендриты: разветвлённые отростки нейрона, через которые нейрон получает информацию от других нейронов.

Форма, посредством которой могут между собой общаться нейроны (отправлять информацию и получать её от других нейронов) называется Синапс. Речь идёт о процессе, при котором аксон одного нейрона передаёт информацию дендритам другого нейрона (канал между двумя частями нейронов называют “синаптическая щель”).

Функции нейронов

Наше тело выполняет много задач и обрабатывает огромный объем информации, идущей от мозга через всю нервную систему. Вследствие этого нейронам необходимо иметь специализацию. По этой причине, несмотря на то, что основной функцией нейронов является получение и передача информации, существуют различные типы нейронов, различающихся по:

Функциям нейронов:

  • Моторные или эфферентные: отвечают за передачу информации в виде электрических импульсов от центральной нервной системы к мышцам или железам.
  • Чувствительные или афферентные: Нейроны, которые связывают наш мозг с внешним миром. Это нейроны, которые получают информацию от различных чувств, ощущений, таких как боль, давление, температура… Включая более специализированные нейроны, “говорящие” о вкусах и запахах.
  • Промежуточные/интеркалярные или ассоциативные нейроны: нейроны, обеспечивающие коммуникации между афферентными и эфферентными нейронами.

Структуре:

  • Униполярные: нейроны, обладающие только одним раздваивающимся отростком, выходящим из сомы, и работающие одновременно как дендрит и как аксон (вход и выход). В своём большинстве это сенсорные нейроны.
  • Биполярные нейроны: имеют два отростка, один из которых работает как дендрит (вход), а другой как аксон (выход). Этот вид нейронов находится в сетчатке, улитке или передней части ушного лабиринта, вестибулярной системе и обонятельной области слизистой оболочки носа.
  • Мультиполярные: этот вид нейронов преобладает в нашей центральной нервной системе. Обладают большим количеством входных отростков (дендритов) и только одним выходным (аксон). Находятся в головном или спинном мозге.

Типу нейротрансмиттера (нейромедиатора), усиливающего функцию нейрона:

  • Серотонинергические – производят Серотонин (связан с настроением).
  • Дофаминергические – производят Дофамин (связан с удовольствием).
  • ГАМК-ергические – производят ГАМК (основной тормозной нейротрансмиттер).
  • Глутаматергические – производят Глутамат (основной возбуждающий нейротрансмиттер, связанный с памятью и воспоминаниями).
  • Холинергические – производят Ацетилхолин (Нейромедиатор, широко распространённый в Центральной Нервной Системе. Многосторонни).
  • Норадренергические – производят Норадреналин/норэпинефрин (действует как нейротрансмиттер и как гормон. Связан с увеличением сердечного ритма и кровяным давлением).
  • Вазопрессинергические – производят Вазопрессин (играет ключевую роль в гомеостатическом регулировании жидкости, глюкозы и солей в крови).
  • Окситоцинергические – производят Окситоцин (связан с любовью, романтическими отношениями и сексуальным поведением…).

Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?

Ранее считалось, что на протяжении человеческой жизни новые нейроны в мозге не образуются. Однако группа учёных Каролинского Медицинского Института (Швеция) провела эксперимент с использованием углерода-14, который показал, что в человеческом мозге, а именно, в Гиппокампе, ежедневно могут рождаться 1400 клеток. Однако с возрастом эта цифра сокращается.

Этот процесс формирования нейронов называется Нейрогенез. Тот факт, что даже в зрелом возрасте возникают новые нейроны, играет важнейшую роль для их функций, а также пластичности и способности мозга адаптироваться к новым ситуациям.

Советы: как улучшить функции нейронов

Как и всегда, здоровые привычки играют важную роль в оптимальном развитии функций нейронов. Наш мозг благодарит нас за заботу о теле. Как говорится, “в здоровом теле – здоровый дух”. Что мы можем сделать, чтобы улучшить пластичность мозга и нейрогенез?

  • Спать, отдыхая: необязательно спать строго 8 часов. У каждого из нас свой ритм сна, и есть люди, для которых вполне достаточно спать 7 или 7,5 часов. Однако важно, чтобы сон был восстанавливающим.
  • Использовать умеренные физические нагрузки и стимуляции: нейрогенез происходит для адаптации к окружающему миру. Это связано с преодолением трудностей для достижения наших целей, что, в свою очередь, задействует наши навыки принятия решений.
  • Избегать чрезмерного стресса: небольшой уровень стресса полезен, но всегда надо знать когда мы “переходим черту”.
  • Заниматься сексом: это отличный способ стимуляции и борьбы со стрессом, а также физическая нагрузка.
  • Делать упражнения для мозга:CogniFit (“КогниФит”) является лидером среди программ по когнитивной стимуляции, все упражнения можно выполнять онлайн с помощью любого устройства – компьютера, телефона, планшета. Нейропсихологи и нейроучёные разработали увлекательные упражнения в виде простых игр, с помощью которых можно профессионально “тренировать” основные функции головного мозга. Эта программа была высоко оценена научным сообществом и в настоящее время применяется в различных медицинских учреждениях, школах, колледжах и университетах по всему миру.

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического теста CogniFit на депрессию прямо сейчас!

Нейропсихологический тест CogniFit на депрессию

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз): В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости – с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны – это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку?Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в Гиппокампе также меняется, благодаря Нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

Перевела с испанского Анна Иноземцева

Источник: https://zen.yandex.ru/media/cognifit/funkcii-neironov-kak-rabotaiut-i-kakuiu-zadachu-vypolniaiut-5a2518f900b3ddf5ab9fecbe

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: