По отросткам чувствительных нейронов возбуждение идет

Чувствительный или сенсорный нейрон

По отросткам чувствительных нейронов возбуждение идет

В теле человека находится около 100 000 000 нейронов. Для чего они нужны? Почему их так много? Что собой представляет чувствительный нейрон? Какую функцию выполняют вставочные и исполнительные нейроны? Давайте познакомимся поближе с этими потрясающими клетками.

Функции

Ежесекундно через наш головной мозг проходит множество сигналов. Процесс не останавливается даже во сне. Организму нужно воспринимать окружающий мир, совершать движения, обеспечивать работу сердца, дыхательной, пищеварительной, мочеполовой системы и т.д. В организации всей этой деятельности участвуют две основные группы нейронов – чувствительные и двигательные.

Когда мы притрагиваемся к холодному или горячему и чувствуем температуру предмета – это заслуга именно чувствительных клеток. Они мгновенно передают полученную с периферии организма информацию. Так обеспечивается рефлекторная деятельность.

Нейроны формируют всю нашу ЦНС. Главные их задачи:

  1. получить информацию;
  2. передать ее по нервной системе.

Эти уникальные клетки способны мгновенно передавать электрические импульсы.

Чтобы обеспечить процесс жизнедеятельности, организм должен обрабатывать огромное количество информации, которая поступает к нему из окружающего мира, реагировать на любой признак изменения условий среды. Чтобы сделать этот процесс максимально эффективным, нейроны делятся по своим функциям на:

  • Чувствительные (афферентные) – это наши проводники в окружающий мир. Именно они воспринимают информацию извне, от органов чувств, и передают их в ЦНС. Особенность в том, что благодаря их контактной деятельности, мы чувствуем температуру, боль, давление, имеем другие чувства. Чувствительные клетки узкой специализации осуществляют передачу вкуса, запаха.
  • Двигательные (моторные, эфферентные, мотонейроны). Двигательные нейроны передают информацию через электрические импульсы от ЦНС к мышечным группам, железам.
  • Промежуточные (ассоциативные, интеркалярные, вставочные). Теперь подробнее разберемся, какую функцию выполняют вставочные нейроны, для чего они вообще нужны, в чем их отличие. Они располагаются между чувствительными и двигательными нейронами. Вставочные нейроны передают нервные импульсы от чувствительных волокон к двигательным. Они обеспечивают «общение» между эфферентными и афферентными нервными клетками. К ним нужно относиться, как к своеобразным природным «удлинителям», длинным полостям, которые помогают транслировать сигнал от сенсорного нейрона к двигательному. Без их участия это было бы невозможно сделать. В этом и заключается их функция.

Сами рецепторы – это специально отведенные для данной функции клетки кожи, мышц, внутренних органов, суставов. Рецепторы могут начинаться еще в клетках эпидермиса, слизистой. Они умеют точно улавливать мельчайшие изменения, как снаружи организма, так и внутри него.

Такие изменения могут быть физическими или химическими. Затем они молниеносно преображаются в специальные биоэлектрические импульсы и отправляются непосредственно к сенсорным нейронам.

Так сигнал проходит путь от периферии к центру организма, где мозг расшифровывает его значение.

Импульсы от органа в мозг проводят все три группы нейронов – двигательные, чувствительные и промежуточные. Из этих групп клеток и состоит нервная система человека. Такое строение позволяет реагировать на сигналы из окружающего мира. Они обеспечивают рефлекторную деятельность организма.

Если человек перестает чувствовать вкус, запах, снижается слух, зрение, это может указывать на нарушения в ЦНС. В зависимости от того, какие органы чувств задеты, невропатолог может определить, в каком отделе мозга возникли проблемы.

Есть две группы функций нервной системы:

1) Соматическая. Это сознательное управление мышцами скелета.

2) Вегетативная (автономная). Это неконтролируемое сознанием управление внутренними органами. Работа этой системы происходит, даже если человек находится в состоянии сна.

Структура

Сенсорные нейроны чаще всего униполярные. Это означает, что они снабжены лишь одним раздваивающимся отростком. Он выходит из тела клетки (сомы) и выполняет сразу функции и аксона, и дендрита. Аксон – это вход, а дендрит чувствительного нейрона – выход. После возбуждения чувствительных сенсорных клеток по аксону и дендриту проходит биоэлектрический сигнал.

Встречаются и биполярные нервные клетки, которые имеют соответственно два отростка. Их можно обнаружить, например, в сетчатке, структурах внутреннего уха.

Тело чувствительной клетки по своей форме напоминает веретено. От тела отходит 1, а чаще 2 отростка (центральный и периферический).

Периферический по своей форме очень напоминает толстую длинную палочку. Он достигает поверхности слизистой или кожи. Такой отросток похож на дендрит нервных клеток.

Второй, противоположный отросток, отходит от противоположной части тела клетки и по форме напоминает тонкую нить, покрытую вздутиями (их называют варикозности). Это аналог нервного отростка нейрона. Данный отросток направлен в определенный отдел ЦНС и так разветвляется.

Чувствительные клетки еще называют периферическими. Их особенность в том, что они непосредственно находятся за периферической нервной системой и ЦНС, но без них работа данных систем немыслима. Например, обонятельные клетки размещены в эпителии слизистой носа.

Как они работают

Функция чувствительного нейрона состоит в приеме сигнала от специальных рецепторов, расположенных на периферии организма, определении его характеристик. Импульсы воспринимаются периферическими отростками чувствительных нейронов, затем они передаются к их телу, а потом по центральным отросткам следуют непосредственно к ЦНС.

Дендриты сенсорных нейронов соединяются с различными рецепторами, а их аксоны – с остальными нейронами (вставочными). Для нервного импульса самым простым путем становится следующий – он должен пройти по трем нейронам: сенсорному, вставочному, моторному.

Самый типичный пример прохождения импульса – когда невропатолог стучит молоточком по коленному суставу.

При этом моментально срабатывает простой рефлекс: коленное сухожилие после удара по нему приводит в движение мышцу, которая к нему прикреплена; чувствительные клетки от мышцы передают сигнал по чувствительным нейронам непосредственно в спинной мозг.

Там сенсорные нейроны устанавливают контакт с двигательными, а те посылают импульсы обратно в мышцу, приводя ее в сокращение, нога при этом выпрямляется.

Кстати, в спинном мозге у каждого отдела (шейный, грудной, поясничный, крестцовый, копчиковый) находится сразу пара корешков: чувствительный задний, двигательный передний. Они образовывают единый ствол. Каждая из этих пар контролирует свою определенную часть тела и посылает центробежный сигнал, что делать дальше, как располагать конечность, туловище, что делать железе и т.д.

Чувствительные нейроны принимают участие в работе рефлекторной дуги. Она состоит из 5 элементов:

  1. Рецептор. Преобразует в нервный импульс раздражение.
  2. Импульс по нейрону следует от рецептора в ЦНС.
  3. Вставочный нейрон, который расположен в мозге, передает сигнал от нейрона чувствительного к исполнительному.
  4. По двигательному (исполнительному) нейрону основной импульс от мозга проводится к органу.
  5. Орган (исполнительный) – это мышца, железа и т.д. Он реагирует на полученный сигнал сокращением, выделением секрета и т.д.

Вывод

Биология человеческого организма очень продумана и совершенна. Благодаря деятельности множества чувствительных нейронов мы можем взаимодействовать с этим удивительным миром, реагировать на него.

Наш организм очень восприимчивый, развитие его рецепторов и чувствительных нервных клеток достигло высочайшего уровня.

Благодаря такой продуманной организации ЦНС наши органы чувств могут воспринимать и передавать мельчайшие оттенки вкуса, запаха, тактильных ощущений, звука, цвета.

Нередко мы считаем, что главное в нашем сознании и деятельности организма – это кора и полушария мозга. При этом мы забываем, какие колоссальные возможности обеспечивает мозг спинной. Именно функционирование спинного мозга обеспечивает получение сигналов от всех рецепторов.

Трудно назвать предел этих возможностей. Наш организм очень пластичен. Чем больше человек развивается, тем больше возможностей предоставляется в его распоряжение. Такой простой принцип позволяет нам быстро приспособиться к изменениям окружающего мира.

Источник: https://vsepromozg.ru/stroenie/chuvstvitelnyj-nejron

Нервные ткани

По отросткам чувствительных нейронов возбуждение идет

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) – клетка с одним длинным отростком – аксоном, и одним/несколькими короткими – дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона – дендрит, а длинный – аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит – отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон – отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом – миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь – рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов – а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения – нейроглии.

Нейроглия – вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная – поддерживает нейроны в определенном положении
  • Изолирующая – ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная – в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая – с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии – шванновских клеток. Между ними хорошо заметны перехваты Ранвье – участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие – они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные – они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны – они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов – коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Синапс

На схеме выше вы наверняка заметили новый термин – синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс “преобразуется” в химический: происходит выброс особых веществ – нейромедиаторов (наиболее известный – ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы – или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных – плечевое сплетение.

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием – миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом – опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Источник: https://studarium.ru/article/80

Чувствительный нейрон или сенсорная нервная клетка – Извилина

По отросткам чувствительных нейронов возбуждение идет

29.12.2019

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: