Пищеварительные вакуоли необходимы для

Содержание
  1. Вакуоль у эукариот: состав растительных и животных клеток, строение и функции, типы вакуолей
  2. Состав вакуоли
  3. Строение и функции
  4. Симбиоз двух организмов
  5. Отзывы и комментарии
  6. Функция пищеварительной вакуоли у амебы – Врач Богданов
  7. Строение амёбы
  8. Жизнедеятельность
  9. Виды простейших паразитов в организме человека:
  10. Амеба — что такое в биологии, строение и жизненный цикл
  11. Амеба протей и ее виды
  12. Как выглядит обыкновенная амёба
  13. Жизненный цикл
  14. Строение
  15. Стадии питания амебы
  16. Размножение
  17. Амеба обыкновенная: строение, среда обитания, значение в природе
  18. Дыхание
  19. Среда обитания
  20. Питание
  21. Значение в природе и жизни человека
  22. Вакуоль – строение и функции в клетке: что это такое и каковы ее особенности
  23. Суть понятия
  24. Функции
  25. Вывод
  26. Вакуоль у эукариот: состав растительных и животных клеток, строение и функции, типы вакуолей – Учёба
  27. Что такое вакуоли и их роль
  28. Образование и строение вакуоли
  29. Функции вакуоли в клетке
  30. Вакуоль в растительной клетке
  31. Вакуоль, видео
  32. Сравнение строения животной и растительной клетки. Основные сходства и различия
  33. Органеллы свойственные всем типам клеток
  34. Органеллы свойственные только растительной клетке
  35. Органеллы свойственные только животной клетке
  36. Сравнительная характеристика растительной и животной клетки
  37. Вакуоли | Биология
  38. Питание инфузории туфельки – Сайт по биологии
  39. Процессы жизнедеятельности. Питание
  40. Выделение
  41. Раздражимость
  42. Размножение. Бесполое
  43. Половое
  44. Природная среда обитания и не только
  45. Жизнедеятельность: питание, дыхание, размножение

Вакуоль у эукариот: состав растительных и животных клеток, строение и функции, типы вакуолей

Пищеварительные вакуоли необходимы для

> Наука > Биология > Вакуоль, её особенности: строение, состав, функции

Вакуоль — это ёмкость внутри клетки, относящаяся к органоидам и используемая живым организмом для различных нужд. Обычно она имеет вид мешочка. Отделена от клетки единственной мембраной, именуемой тонопластом. Образуются вакуоли из тонопластовых пузырьков. Бывают у растений и животных, водорослей, грибов, бактерий, у вирусов и фагов их нет.

  • Состав вакуоли
  • Строение и функции
  • Симбиоз двух организмов

Состав вакуоли

Часто основной состав органоида — это раствор необходимых веществ, то есть клеточный сок.

Несмотря на различия животных и растительных организмов, их клеточный сок представлен схожими веществами.

  1. Вода (например, в клетках кактуса).
  2. Минеральные соли: хлориды, нитраты, фосфаты (полифосфаты у фотосинтезирующих бактерий), нитраты.
  3. Углеводы: моносахариды, дисахариды, крахмал (в клетках клубней картофеля), гликоген (у животных).
  4. Жиры (например, белый жир подкожной жировой клетчатки у человека), поли-β-оксимасляная кислота (у некоторых бактерий).
  5. Красители: меланин (в коже человека), танин и антоцианы (у растений).
  6. Заживляющие вещества, заделывающие рану в случае повреждения (например, латекс в клеточной паренхиме коры гевеи).
  7. Газы, накапливаемые для повышения плавучести и полезного использования. У эвглены зелёной, биология которой двойственна (животное в темноте и растение на свету), накапливается и расходуется переменно углекислый газ или кислород.

: энергетический и пластический обмен — процессы в клетке.

Строение и функции

В некоторых органах многоклеточных организмов этот органоид бурно разрастается, вытесняя прочее содержимое клетки на самый её край. Например, в горбе верблюда после прихода в оазис постепенно накапливается смесь воды и жира — вакуоли увеличиваются, горб растёт, набухает, поднимается.

Заметны различия между растительными и животными органоидами. Вакуоль у растений часто единственная в клетке, но крупная и содержащая какие-либо запасы. В животной клетке их много, они мелкие и выполняют в основном выделительные и пищеварительные функции. Рассмотрим основные типы (таблица).

Тип вакуолиСтроение, расположениеФункции
ЗапасающаяВ клетках плодов, семян, корневищ многих растений, и некоторых тканей животных, разрастаясь, занимает почти весь объёмЗапас воды, питательных веществ, минералов и витаминов
ПищеварительнаяРасположена в клетках животных, губок, микроорганизмов. Быстро меняет объём и формуОбволакивание и переваривание органики с помощью ферментов
Сократительная (пульсирующая, выделительная)В клетках животных и одноклеточных организмов. Отличается формой (у инфузорий — напоминает звёздочку)Сбор и удаление отходов жизнедеятельности клетки, поддержание в клетке необходимого уровня осмотического давления
Аэросома (газовая)Обычна для клеток растений с плавающими на воде листьями, ряски, плавучих микроводорослей наподобие спирулины, некоторых водных животныхНакачка водородом и другими газами, с целью повышения плавучести (непотопляемости)
ТоксическаяВ клетках многих растений, насекомых, рыб (фугу), ядовитых животных. Содержит алкалоиды, полифенолы и прочее (пример: соланин зелёных картофельных клубней).Накопление ядов, используемых растениями для защиты от поедания животными и насекомыми, а животными — для «внешнего пищеварения».

Дополнительные сведения:

  • Сократительная (пульсирующая, выделительная) — её биология у одноклеточных сходна с почками и мочевым пузырём у млекопитающих.
  • Пищеварительная — этот органоид быстро эволюционирует, меняя размер и содержимое. Сначала он формируется вокруг захваченного пищевого комка, обычно имеющего кислый состав. Под воздействием впрыскиваемых ферментов он увеличивается, показатель кислотности меняется на щелочной. Во время переваривания часть веществ усваивается, всасываясь в клетку, размер уменьшается. Оставшиеся отходы удаляются через сократительную вакуоль или порошицу.
  • Выделяют и более узкоспециализированные органоиды, например, лизосомы — характерны для многоклеточных животных, содержат гидролитические ферменты, путём фагоцитоза, пиноцитоза утилизируют чужие бактерии, собственные отмершие органы и ткани.

Симбиоз двух организмов

Симбиоз одного живого существа с другими организмами, находящимися в его пищеварительной вакуоли, рассматривается как один из важных элементов эволюции. Особенность одноклеточных и мелких эукариот: для них обычны специализированные органоиды, по нескольку одновременно, с частой сменой, сочетанием, изменением функций.

Например, многие крупные бактерии, актинии, грибы, морские слизни практикуют пищеварительный захват микроводорослей. При этом переваривание водорослей может притормозиться со вступлением организма в симбиотическую связь с ними.

Устойчивый симбиоз гриба с водорослями внутри его органоидов привёл к появлению лишайников.

Эвглена зелёная, как принято считать, имеет в качестве хлоропластов хламидомонад, эволюционировавших внутри её организма.

Плавучий папоротник азолла образует заполненные слизью полости, и когда в них попадает сине-зелёная водоросль анабена (Anabaena azollae), полость закрывается, образуя вакуоль для проживания в ней этой водоросли.

Отзывы и комментарии

Источник: https://obrazovanie.guru/nauka/biologiya/vakuol-eyo-osobennosti-stroenie-sostav-funktsii.html

Функция пищеварительной вакуоли у амебы – Врач Богданов

Пищеварительные вакуоли необходимы для

Амёба — это простейший одноклеточный организм. Относится к царству животных. Класс — лобозные, семейство Amoebidae. Вопреки своему названию, строение этой клетки довольно сложное. Давайте разберёмся в характеристиках этого животного.

У простейших отсутствует жёсткая оболочка тела, форма изменчивая, асимметричная. Характерно передвижение с мощью так называемых ложноножек или псевдоподий. Такое название они получили из-за способности появляться и пропадать.

Строение амёбы

Клетка состоит из таких частей:

  • пищеварительной вакуоли,
  • сократительной вакуоли,
  • ядра,
  • плазматической мембраны,
  • цитоплазмы (эктоплазмы и эндоплазмы),
  • псевдоподий (ложноножек),

Среда обитания — влажная. Реки, пруды, водоёмы считаются домом этого животного. А также любит внедряться во внутренние органы различных млекопитающих, в том числе и человека. Без влажной среды моментально высохнет, т.к. мембрана у неё очень тонкая и не приспособлена к жизни на суше.

Все живые существа на Земле делятся на две группы:

  • эукариоты (характеризуются наличием ядра),
  • прокариоты (ядро отсутствует).

Клетка состоит из ядра, которое занимает её большую часть. В нём содержится наследственный материал ДНК. Выделительная система работает с помощью сократительной вакуоли.

Жизнедеятельность

Псевдоподии помогают ей не только передвигаться, но и участвовать в процессе захвата пищи. Маятникообразные движения характеризуют это животное. Мембрана служит для газообмена, так как у простейшего нет органов дыхания.

Она дышит всей поверхностью клетки. Клетка насыщается кислородом и освобождает углекислый газ. Сократительные вакуоли принимают участие в регуляции процессов давления внутри клетки. Они могут появляться в абсолютно любой части клетки.

Амёба (в переводе с греческого) значит изменение. Такое название она получила благодаря способности изменять форму.

Эти микроорганизмы размножаются бесполым путём, то есть как таковой половой процесс при размножении не происходит. Клетка делится надвое. При этом ядро видоизменяется: сначала происходит вытяжение, а затем — удлинение, конечный этап — перетяжение по центру и образование нового простейшего организма. Причём амёба может размножаться несколько раз в сутки.

При неблагоприятных условиях переходит в состояние цисты — состояние полного покоя, при котором процессы жизнедеятельности замедляются. На поверхности клетки образуется прочная защитная мембрана.

Ветер переносит цисты на дальние расстояния. Когда же внешняя среда полностью подходит амёбе, она выпускает свои ложноножки и снова активизируется, начиная размножаться с новыми силами.

Амёба может паразитировать в организме человека. Когда она находится в состоянии цисты, происходит заражение.

Виды простейших паразитов в организме человека:

  1. Дизентерийная. Среда обитания — толстый кишечник людей. Человек начинает болеть амебиазом (хронический рецидивирующий колит). Передаётся этот недуг орально-фекальным путём.
  2. Кишечная амёба. Обитает в нижних отделах кишечника. Вызывает появление цист.

Существуют также непатогенные амёбы. К ним относятся:

  1. Карликовая. Имеет микроскопичный размер, поэтому поставить диагноз пациенту бывает непросто.
  2. Ротовая. Присуща людям с заболеваниями полости рта. Выявляется при взятии соскоба налёта на зубах.
  3. Диэнтамёба. Простейшее небольшого размера, без цист.
  4. Амёба Гартмана. Похожа на дизентерийную. Можно диагностировать при помощи анализа кала. Специфические внешние проявления полностью отсутствуют.

Паразиты, попадая в организм человека, оказывают пагубное влияние на процессы пищеварения и обмена веществ, нарушая функционирование внутренних органов.

Источник:

Амеба — что такое в биологии, строение и жизненный цикл

Мир настолько уникален, что невозможно в нем разобраться, если не изучить хотя бы основы и азы существования. Одним из уникальных объектов животного мира является амеба, изучаемая на уроках биологии в школе.

Амеба – это одноклеточное существо, которое можно встретить в загрязненных водоемах, а также в организме человека, но даже для вооруженного глаза она не всегда заметна. Увидеть такое живое существо подвластно микроскопу.

Большинство людей даже и не задумываются, что, благодаря этому милому одноклеточному существу, люди заболевают кишечными инфекциями, инфекциями ротоглотки, мозга, глаз.

Амеба протей и ее виды

Есть два типа патогенных и непатогенных организмов.

Из первой группы выделяют три основных вида:

  1. Простая амеба – протей (Amoebaproteus) одна из самых простых по внешнему виду особей и самая крупная по размеру.
  2. Дизентерийная амеба является паразитической формой. Встречается в кишечнике и в грязных водоемах.
  3. Кишечная амеба – живет в кишечнике и там питается продуктами жизнедеятельности человека.

Второй тип — непатогенные бактерии, включают в себя большее разнообразие, чем первая группа:

  1. Кишечный паразит — не виден в организме сразу и особого дискомфорта человеку не доставляет.
  2. Бактерия Гартмана не приносит также человеку особого вреда и ее можно определить по более точному исследованию на дисбактериоз.
  3. Карликовый тип — самый миниатюрный из всех его сородичей. Он настолько мал и неподвижен, что его очень трудно диагностировать.
  4. Иодамеба Бючли — схожа по своим характеристикам с дизентерийным видом первого типа.
  5. Диэнтоамеба имеет мутноватый вид, но также является паразитом.

Есть еще ротовая амеба, ее название отвечает само за себя. Живет и размножается во рту у человека и является проблемой большинства заболеваний ротоглотки.

Все амебы также делятся на раковинные и без них. Это связано с их формой. Обычные амебы меняют свою форму, перетекая из одной ножки в другую, а раковинные нет.

Как выглядит обыкновенная амёба

Обычная амеба обитает в загрязненной воде и двигается по дну водоема. Внешне она похожа на брошенную в стену игрушку лизуна, только в несколько тысяч раз уменьшенную в размерах.

Она не имеет скелета, поэтому постоянно видоизменяется. Обычно строение и все функциональные особенности амеб рассматривают на примере амебы протей.

Жизненный цикл

Цикл жизни длится пока существуют благоприятные для этого условия. Но если условия не удовлетворяют, одноклеточное существо впадает в анабиоз – спит и прекращает свою деятельность, превращаясь в кружочек цисту. Но, как только условия становятся благоприятными, она снова просыпается.

Строение

Данное одноклеточное имеет совершенно простое строение. Кроме ядра и цитоплазмы, которая заполняет ее тело – по сути ничего особенного то и нет.

Есть маленькая вакуоль, которая помогает перерабатывать микроскопические одноклеточные частички (в основном это водоросли) и тем самым продлевать жизненную деятельность амебы.

Есть еще сократительная вакуоль, которая помогает ей двигаться. Снаружи для фиксации тела идет окаймление мембраной – более плотной субстанцией, чем внутри.

Внутренняя часть амебы – это цитоплазма. Она более жидкая и называется эндоплазмой, а ближе к краям она становится гуще и называется эктоплазмой.

Стадии питания амебы

При передвижении амебы в своей среде она наталкивается на микроскопические одноклеточные продукты питания. Они попадают в ее тельце и обволакиваются вакуолью. Далее происходит их переваривание.

Таких вакуолей в тельце амебы может быть несколько. Начинается процесс расщепления одноклеточного на ферменты. Далее расщепленные структуры всасываются внутрь амебы, а после уже происходит выделение.

Размножение

Для размножения амебе не нужен партнер. Она благополучно это делает сама, когда полностью созревает и готова к делению.

Ядро — ее центральная темная часть — меняется по форме и напоминает небольшую сардельку. Через какое-то время сарделька растягивается, и две ее конечные части отделяются друг от друга, образуя две темные капли – это два новых ядра.

Источник: https://obraz-ola.ru/prochee/harakteristika-amyoby-kak-organizma.html

Амеба обыкновенная: строение, среда обитания, значение в природе

Амеба обыкновенная – вид простейших существ из эукариот, типичный представитель рода Амебы.

Систематика. Вид амебы обыкновенной относится к царству — Животные, типу – Амебозои. Амебы объединены в класс Lobosa и отряд – Amoebida, семейство – Amoebidae, род – Amoeba.

Характерные процессы. Хотя амебы – это простые, состоящие из одной клетки существа, не имеющие никаких органов, им присущи все жизненно необходимые процессы. Они способны передвигаться, добывать пищу, размножаться, поглощать кислород, выводить продукты обмена.

Дыхание

Амеба получает O2 из воды, который диффундирует во внутреннюю полость через наружные покровы. Все тело участвует в дыхательном акте. Кислород, попавший в цитоплазму, необходим для расщепления питательных веществ на простые составляющие, которые Amoeba proteus сможет переварить, а еще для получения энергии.

Среда обитания

Обитает в пресной воде канав, небольших прудов и болот. Может жить также в аквариумах. Культуру амебы обыкновенной можно легко разводить в лабораторных условиях. Она является одной из крупных свободноживущих амеб, достигающих 50 мкм в диаметре и видимых невооруженным глазом.

Питание

Амеба обыкновенная передвигается с помощью ложноножек. Она преодолевает один сантиметр за пять минут. Передвигаясь, амебы наталкиваются на различные мелкие объекты: одноклеточные водоросли, бактерии, мелких простейших и т.д. Если объект достаточно мал, амеба обтекает его со всех сторон и он, вместе с небольшим количеством жидкости, оказывается внутри цитоплазмы простейшего.

Схема питания амебы обыкновенной

Процесс поглощения твердой пищи амебой обыкновенной называется фагоцитозом.

Таким образом, в эндоплазме образуются пищеварительные вакуоли, внутрь которых из эндоплазмы поступают пищеварительные ферменты и происходит внутриклеточное пищеварение.

Жидкие продукты переваривания проникают в эндоплазму, вакуоль с непереваренными остатками пищи подходит к поверхности тела и выбрасывается наружу.

Кроме пищеварительных вакуолей в теле амеб находится и так называемая сократительная, или пульсирующая, вакуоль. Это пузырек водянистой жидкости, который периодически нарастает, а достигнув определенного объема, лопается, опорожняя свое содержимое наружу.

Основная функция сократительной вакуоли — регуляция осмотического давления внутри тела простейшего. В связи с тем, что концентрация веществ в цитоплазме амебы выше, чем в пресной воде, создается разность осмотического давления внутри и вне тела простейшего.

Поэтому пресная вода проникает в организм амебы, но ее количество остается в пределах физиологической нормы, поскольку пульсирующая вакуоль «откачивает» избыток воды из тела. Подтверждением этой функции вакуоли служит их наличие только у пресноводных простейших.

У морских она или отсутствует, или сокращается очень редко.

Сократительная вакуоль кроме осморегуляторной функции частично выполняет и выделительную функцию, выводя вместе с водой в окружающую среду продукты обмена веществ.

Однако основная функция выделения осуществляется непосредственно через наружную мембрану.

Известную роль играет, вероятно, сократительная вакуоль в процессе дыхания, ибо проникающая в результате осмоса в цитоплазму вода несет растворенный кислород.

Значение в природе и жизни человека

Amoeba proteus — важное составляющее экологических систем. Она регулирует численность бактериальных организмов в озерах и прудах. Очищает водную среду от чрезмерного загрязнения. Также является важным составляющим пищевых цепочек. Одноклеточные – еда для маленьких рыб и насекомых.

Ученые используют амебу как лабораторное животное, проводя на ней множество исследований. Очищает амеба не только водоемы, но поселившись в человеческом организме, она поглощает разрушенные частицы эпителиальной ткани пищеварительного тракта.

Оцените, пожалуйста, статью. Мы старались:) (234,96

Источник: https://vrachbogdanov.ru/funkcija-pishhevaritelnoj-vakuoli-u-am.html

Вакуоль – строение и функции в клетке: что это такое и каковы ее особенности

Пищеварительные вакуоли необходимы для

Все живые существа на планете Земля имеют клеточное строение. Этот факт не относится к внеклеточной форме жизни вирусам. Одной из составных частей клетки является вакуоль. Она встречается как у животных и растений, так и у грибов, водорослей, бактерий. Что представляет собой вакуоль, ее строение и функции будут описаны ниже.

Суть понятия

Изучение, что такое вакуоль, следует начать с понятия эукариотов — это одна из разновидностей клеток, в которых присутствует ядро, отделенное от цитоплазмы двойной перегородкой мембраной или тонопластом.

Обратите внимание! Для ядра характерен существенный числовой параметр. Это связано с содержанием в нем молекулы ДНК.

В клетке присутствует емкость, которая относится к категории органоидов (или органелл) и необходима живому организму для конкретных нужд. По внешнему виду органелла напоминает мешочек. В целом считается закрытой структурой. Вакуоль отделяется от прочих клеточных составляющих одной мембраной.

Вакуоль

Что такое вакуоль, каково ее происхождение. Органелла образуется из провакуолей — это такие новообразования в виде тонопластовых пузырьков. Категория провакуолей относится к комплексу Гольджи и эндоплазматическому ретикулуму. Их слияние обуславливает появление органелл.

Перечислим основные характеристики вакуолей:

  • органелла растительной клетки превалирует в количественном выражении над органоидом животной клетки,
  • для животной органеллы присущ временный характер существования, для растительной клетки – постоянный,
  • в составе растений присутствует единственная органелла с крупным размером и значительными запасами,
  • животная клетка характеризуется множеством мелких органоидов для выполнения пищеварительной и выделительной функций.

Вакуоль растительной и животной клетки

Существует разделение вакуолей на следующие категории:

  1. Пищеварительная вакуоль: встречается у губок, простейших и животных, представлена в виде мембранных пузырьков в составе клеточной цитоплазмы, Образуется как результат заглатывания капелек жидкости (или пиноцитоза), оформленных клеток или частиц (или фагоцитоза). Отмечается моментальным изменением формы и объема. Получила свое название за счет процесса пищеварения в ее составе. Пищеварительный процесс внутри органоида по отношению к пищевым частицам именуется циклозом, в ходе которого в состав органеллы попадают ферменты, отвечающие за процесс переваривания. В итоге происходит изменение среды с кислой на щелочную. Остатки, не прошедшие этап переваривания, выводятся через порошицу.
  2. Пульсирующая: встречается под названием сократительной или выделительной, присутствует в составе одноклеточных организмов и животных клеток, имеет форму звезды, способствует аккумулированию и выводу результатов распада, отвечает за поддержание стабильного уровня осмотического давления, необходима для регуляции осмотического давления.
  3. Запасающая: присутствует в семенах, плодах, растительных корневищах, животных тканях, для нее характерно разрастание с поглощением клеточного пространства, гарантирует водный запас, накопление витаминов, минералов и питательных веществ.
  4. Газовая: встречается в клетках ряски, спирулины (плавучих микроводорослях), водных животных, способствует водородному и иному газовому обогащению, повышает степень плавучести / непотопляемости организма.
  5. Токсическая: отмечается в клеточной структуре рыб, насекомых, растений, ядовитых животных, включает в состав полифенолы, алкалоиды, способствует аккумуляции ядов, которые применяются растениями для защиты от насекомых и животных.

Строение и функции

Функции

Органоид занимает от 0,05 до 0,9 клеточного пространства. Это обусловлено значением и расположением вакуоли в составе определенного организма.

Оптимальным вариантом для изучения вакуоли, ее строения и функций является таблица.

Название функцииФункциональное значение
Давление тургорного типаСоздает силу воздействия на клеточную стенку. Позволяет структурам растительного характера сохранять жесткость
Развитие и ростОбеспечивает клеточное удлинение. Достигается за счет поглощения воды и создания тургорного давления на клеточную стенку.Усиливается высвобождением белков, необходимых для снижения степени жесткости стенки.
НакоплениеСпособствует хранению воды, минералов, питательных веществ, ферментов, ионов, молекул и пигментов.
Молекулярная деградацияДостигается за счет кислой среды внутри органеллы. Способствует деградации и разрушению крупных молекул,разрушительный процесс активируется ферментами посредством влияния среды с низким pH.
ДетоксикацияГарантирует выведение токсичных веществ (гербицидов и тяжелых металлов) из области цитозоля.
ЗащитаОбеспечивает первоначальное хранение и последующее выделение химических веществ, несущих потенциальный вред для организма.
ТранспортСоздается накопление и транспортировка ионов.
Водно-солевой обменОбеспечивает формирование внутренней водной среды.

Данная таблица наглядно и кратко представляет информацию о функциях вакуоли.

! Из чего состоит нуклеотид и что это такое

Вывод

Вакуоль встречается как у животных и растений. Ее присутствие отмечается в составе бактерий, грибов. В зависимости от места расположения видоизменяется состав органеллы и перечень ее функций.

Источник: https://tvercult.ru/nauka/chto-takoe-pishhevaritelnaya-vakuol-stroenie-i-osnovnyie-funktsii

Вакуоль у эукариот: состав растительных и животных клеток, строение и функции, типы вакуолей – Учёба

Пищеварительные вакуоли необходимы для

  • Что такое вакуоли и их роль
  • Образование и строение вакуоли
  • Функции вакуоли в клетке
  • Вакуоль в растительной клетке
  • Вакуоль, видео
  • Что такое вакуоли и их роль

    Вакуоли представляют собой одномембранные клеточные органоиды, то есть другими словами являются одним из важных компонентов клетки, причем не любой клетки, а только клетки эукариотической, то есть такой, у которой в наличии ядро и мембрана (внешняя оболочка). Впрочем, не все эукариотические клетки имеют вакуоли среди своих органоидов, в основном они встречаются в клетках растений и грибов. О том, какое строение вакуоли, и какую роль она осуществляет для нормальной работы клетки наша статья.

    Образование и строение вакуоли

    Все вакуоли образуются от провакуолей, которые в свою очередь появляются при рождении клетки в виде мембранных пузырьков.

    Так выглядят вакуоли в растительной и животной клетке. Внешне она представляет собой большой пузырек, который в зрелой клетке может занимать более половины всего объема (особенно в растительной клетке).

    По краям вакуоль подобно клетке окружена защитной оболочкой – мембраной, называемой тонопластом. Внутри же вакуоли находится клеточный сок, представляющий собой концентрированный раствор из воды, минеральных солей, сахаров, органических кислот, кислорода, диоксида углерода, продуктов клеточного метаболизма и так далее.

    Мембрана-тонопласт вакуоли местами проницаема, в частности через нее в вакуоль поступает вода, благодаря этому вакуоль начинает осуществлять давление на окружающую цитоплазму (это давление называют тургорным), как следствие цитоплазма прижимается к стенкам клетки. Такое давление, вызванное вакуолей, помогает клеткам растений оставаться жесткими и прямыми и в целом способствуют их росту.

    Вакуоль амебы.

    Функции вакуоли в клетке

    Вакуоли обеспечивают нормальную работу клетки и осуществляют целый ряд полезных функций:

    • Именно благодаря вакуолям осуществляется рост клетки, они способствуют ее удлинению за счет особого тургорного давления на стенки клетки. Как мы писали выше, тургорное давление вакуоли на клеточную стенку происходит вследствие заполнения вакуоли водой.
    • Вакуоли хранят важные минералы, питательные вещества, воду, необходимые клетке ферменты и растительные пигменты.
    • Вакуоли удаляют из клетки потенциально токсичные вещества, такие как тяжелые металлы и гербициды. Также внутренняя кислая среда вакуолей осуществляют расщепление крупных молекул, которые мешают нормальной работе клеток.

    Вакуоль в растительной клетке

    Дополнительно в клетках растений вакуоли осуществляют такие функции как:

    • Защиту, у некоторых растений именно вакуоли выделяют особые химические вещества, которые являются ядовитыми либо попросту неприятными по запаху для некоторых животных. Таким образом, растения защищают себя.
    • Также у многих растений именно вакуоли ответственны за прорастание семян. В вакуолях хранятся важные белки, углеводы и жиры, необходимые для роста семян. По сути вакуоли являются источником питательных веществ для семян на время их прорастания.

    Вакуоль, видео

    • И в завершение образовательное видео по теме нашей статьи.
    • Эта статья доступна на английском языке – Vacuole.

    Источник:

    Сравнение строения животной и растительной клетки. Основные сходства и различия

    Клетка – это структурная и функциональная единица живого организма, которая несет генетическую информацию, обеспечивает обменные процессы, способна к регенерации и самовоспроизведению.

    Есть одноклеточные особи и развитые многоклеточные животные и растения. Их жизнедеятельность обеспечивается работой органов, которые построены из разных тканей. Ткань, в свою очередь, представлена совокупностью клеток схожих по строению и выполняемым функциям.

    Клетки разных организмов имеют свои характерные свойства и строение, но есть общие составляющие присущие всем клеткам: и растительным, и животным.

    Органеллы свойственные всем типам клеток

    Строение растительной и животной клетки

    Ядро – один из важных компонентов клетки, содержит генетическую информацию и обеспечивает передачу ее потомкам. Окружено двойной мембраной, что изолирует его от цитоплазмы.

    Цитоплазма – вязкая прозрачная среда, заполняющая клетку. В цитоплазме размещены все органоиды. Цитоплазма состоит из системы микротрубочек, которая обеспечивает четкое перемещение всех органелл. А также контролирует транспорт синтезированных веществ.

    Клеточная мембрана – оболочка, которая отделяет клетку от внешней среды, обеспечивает транспорт веществ в клетку и выведение продуктов синтеза или жизнедеятельности.

    Эндоплазматическая сеть – мембранная органелла, состоит из цистерн и канальцев, на поверхности которых происходит синтез рибосом (гранулярная ЭПС). Места, где нет рибосом, образуют гладкий эндоплазматический ретикулум. Гранулярная и агранулярная сеть не отграничены, а переходят друг в друга и соединяются с оболочкой ядра.

    Комплекс Гольджи – стопка цистерн, сплюснутых в центре и расширенных на периферии. Предназначен для завершения синтеза белков и дальнейшего транспорта их из клетки, вместе с ЭПС образует лизосомы.

    Митохондрии – двухмембранные органоиды, внутренняя мембрана формирует выступы внутрь клетки – кристы. Отвечают за синтез АТФ, энергетический обмен. Выполняет дыхательную функцию (поглощая кислород и выделяя СО2).

    Рибосомы – отвечают за синтез белка, в их структуре выделяют малую и большую субъединицы.

    Лизосомы – осуществляют внутриклеточное переваривание, за счет содержания гидролитических ферментов. Расщепляют захваченные чужеродные вещества.

    Как в растительных, так и животных клетках есть, помимо органелл, непостоянные структуры — включения. Они появляются при повышении обменных процессов в клетке. Они выполняют питательную функцию и содержат:

    • Зерна крахмала в растениях, и гликоген — в животных;
    • белки;
    • липиды – высокоэнергетические соединения, обладают большей ценностью, чем углеводы и белки.

    Есть включения, не играющие роли в энергетическом обмене, они содержат продукты жизнедеятельности клетки. В железистых клетках животных включения накапливают секрет.

    Органеллы свойственные только растительной клетке

    Органеллы растительной клетки

    Клетки животных в отличие от клеток растений не содержат вакуолей, пластид, клеточной стенки.

    Клеточная стенка формируется из клеточной пластинки, образуя первичную и вторичную клеточную оболочки.

    Первичная клеточная стенка встречается в недифференцированных клетках. В ходе созревания между мембраной и первичной клеточной стенкой закладывается вторичная оболочка. По своему строению она сходна с первичной, только имеет больше целлюлозы и меньшее количество воды.

    Вторичная клеточная стенка оснащена множеством пор. Пора – это место, где между первичной оболочкой и мембраной отсутствует вторичная стенка. Поры размещены попарно в смежных клетках. Размещенные рядом клетки связываются друг с другом плазмодесмой – это канал, представляющий собой тяж цитоплазмы, выстланный плазмолеммой. Через него клетки обмениваются синтезированными продуктами.

    Функции клеточной стенки:

    1. Поддержание тургора клетки.
    2. Придает форму клеткам, выполняя роль скелета.
    3. Накапливает питательные продукты.
    4. Защищает от внешнего воздействия.

    Вакуоли – органеллы, наполненные клеточным соком, участвуют в переваривании органических веществ (сходны с лизосомами животной клетки). Образуются при помощи совместной работы ЭПС и комплекса Гольджи. Сначала формируется и функционирует несколько вакуолей, во время старения клетки они сливаются в одну центральную вакуоль.

    Пластиды – автономные двухмембранные органеллы, внутренняя оболочка имеет выросты – ламеллы. Все пластиды делят на три типа:

    • Лейкопласты – безпигментные образования, способны запасать крахмал, белки, липиды;
    • хлоропласты – зеленные пластиды, содержат пигмент хлорофилл, способны к фотосинтезу;
    • хромопласты – кристаллы оранжевого цвета, из-за наличия пигмента каротина.

    Органеллы свойственные только животной клетке

    Органеллы животной клетки

    Отличие растительной клетки от животной заключается в отсутствии в ней центриоли, трехслойной мембраны.

    Центриоли – парные органеллы, расположены вблизи ядра. Принимают участие в формировании веретена деления и способствуют равномерному расхождению хромосом к разным полюсам клетки.

    Плазматическая мембрана — для клеток животных характерна трехслойная, прочная мембрана, построена из липидов протеинов.

    Сравнительная характеристика растительной и животной клетки

    Сравнительная таблица животной и растительной клетки
    СвойстваРастительная клеткаЖивотная клетка
    Строение органеллМембранное
    ЯдроСформированное, с набором хромосом
    ДелениеРазмножение соматических клеток, путем митоза
    ОрганоидыСходный набор органелл
    Клеточная стенка+
    Пластиды+
    Центриоли+
    Тип питанияАвтотрофныйГетеротрофный
    Энергетический синтезС помощью митохондрий и хлоропластовТолько с помощью митохондрий
    МетаболизмПреимущество анаболизма над катоболизмомКатаболизм превышает синтез веществ
    ВключенияПитательные вещества (крахмал), солиГликоген, белки, липиды, углеводы, соли
    РесничкиКрайне редкоЕсть
    • Растительные клетки благодаря хлоропластам осуществляют процессы фотосинтеза – преобразуют энергию солнца в органические вещества, животные клетки на это не способны.
    • Митотическое деление растения идет преимущественно в меристеме, характеризуется наличием дополнительного этапа – препрофазы, в организме животных митоз присущ всем клеткам.
    • Размеры отдельных растительных клеток (около 50мкм) превышают размеры животных клеток (примерно 20мкм).
    • Взаимосвязь между клетками растений осуществляется за счет плазмодесмы, животных – при помощи десмосом.
    • Вакуоли растительной клетки занимают большую часть ее объёма, в животных – это мелкие образования в небольших количествах.
    • Клеточная стенка растений построена из целлюлозы и пектина, у животных мембрана состоит из фосфолипидов.
    • Растения не способны активно передвигаться, поэтому приспособились автотрофному способу питания, синтезируя самостоятельно все необходимые питательные вещества из неорганических соединений.
    • Животные – гетеротрофы и используют экзогенные органические вещества.

    Сходство в структуре и функциональных возможностях растительных и животных клеток указывает на единство их происхождения и принадлежности к эукариотам. Их отличительные черты обусловлены различным способом жизни и питания.

    Оцените, пожалуйста, статью. Мы старались:) (30

    Источник:

    Вакуоли | Биология

    Вакуоли — это одномембранные органоиды эукариотических клеток. При этом их содержат не все клетки эукариот.

    Функции вакуолей разнообразны. В основном сводятся к секреции, хранение запасных веществ, аутофагия, автолиз, поддержанию тургорного давления.

    Формируются путем слияния провакуолей, которые образуют ЭПС и комплекс Гольджи.

    В животных клетках имеются небольшие вакуоли: фазоцитозные, пищеварительные и др. Сократительные вакуоли регулируют осмотическое давление, вывод продуктов распада. В растительных клетках обычно имеется одна большая центральная вакуоль.

    Источник: https://rozli.ru/prochee/vakuol-u-eukariot-sostav-rastitelnyh-i-zhivotnyh-kletok-stroenie-i-funktsii-tipy-vakuolej.html

    Питание инфузории туфельки – Сайт по биологии

    Пищеварительные вакуоли необходимы для

    Инфузория-туфелька обитает в мелких стоячих водоёмах. Это одноклеточное животное длиной 0,5 мм имеет веретеновидную форму тела|тела, отдалённо напоминающую туфлю. Инфузории всё время находятся в движении, плавая тупым концом вперёд.

    Скорость передвижения этого животного достигает 2,5 мм в секунду. На поверхности тела|тела у них имеются органоиды движения – реснички.

    В клетке два ядра|ядра: большое ядро отвечает за питание, дыхание, движение, обмен веществ; малое ядро участвует в половом процессе.

    Организм инфузории устроен сложнее. Тонкая эластичная оболочка, покрывающая инфузорию снаружи, сохраняет постоянную форму её тела|тела. Этому же способствуют хорошо развитые|развитые опорные волоконца, которые находятся в прилегающем к оболочке слое цитоплазме. На поверхности тела|тела инфузории расположено около 15 000 колеблющихся ресничек.

    У основания каждой реснички лежит базальное тельце|тельце. Движение каждой реснички состоит из резкого взмаха в одном направлении и более медленного, плавного|плавного возвращения к исходному положению. Реснички колеблются примерно 30 раз в секунду и, словно вёсла, толкают инфузорию вперёд. Волнообразное движение ресничек при этом согласованно.

    Когда инфузория-туфелька плывёт, она медленно вращается вокруг продольной оси|оси тела|тела.

    Процессы жизнедеятельности. Питание

    Туфелька и некоторые другие свободно живущие инфузории питаются бактериями и водорослями.

    Тонкая эластичная оболочка, (клеточная мембрана) покрывающая инфузорию снаружи, сохраняет постоянную форму тела|тела. На поверхности тела|тела расположено около 15 тысяч ресничек. На теле имеется углубление – клеточный рот, который переходит в клеточную глотку|глотку.

    На дне глотки|глотки пища|пища попадает|попадает в пищеварительную вакуоль. В пищеварительной вакуоле пища|пища переваривается в течение часа, вначале при кислой, а затем при щелочной реакции. Пищеварительные вакуоли перемещаются в теле инфузории током цитоплазмы.

    Не переваренные остатки выбрасываются наружу в заднем конце тела|тела через особую структуру – порошицу, расположенную позади ротового отверстия.

    Выделение

    В организме инфузории-туфельки находятся две сократительные вакуоли, которые располагаются у переднего и заднего концов тела|тела. В них собирается вода с растворёнными веществами, образующимися при окислении сложных органических веществ.

    Достигнув предельной величины|величины, сократительные вакуоли подходят к поверхности тела|тела, и их содержимое изливается наружу.

    У пресноводных одноклеточных животных через сократительные вакуоли удаляется избыток воды|воды, постоянно поступающей в их тело из окружающей среды|среды.

    Раздражимость

    Инфузории-туфельки собираются к скоплениями бактерий в ответ на действие выделяемых ими веществ, но уплывают от такого раздражителя, как поваренная соль.

    Раздражимость – свойство всех живых организмов отвечать на действия раздражителей – света, тепла, влаги, химических веществ, механических воздействий. Благодаря раздражимости одноклеточные животные избегают|избегают неблагоприятных условий, находят пищу|пищу, особей|особей своего года.

    Размножение. Бесполое

    Инфузория обычно размножается бесполым путём – делением надвое. Ядра|Ядра делятся на две части, и в каждой новой инфузории оказывается по одному большому и по одному малому ядру. Каждая из двух дочерних получает часть органоидов, а другие образуются заново.

    Половое

    При недостатке пищи|пищи или изменении температуры инфузории переходят к половому размножению, а затем могут превратиться в цисту.

    При половом процессе увеличения числа|числа особей|особей не происходит. Две инфузории временно соединяются друг с другом. На месте соприкосновения оболочка растворяется, и между животными образуется соединительный мостик. Большое ядро каждой инфузории исчезает. Малое ядро дважды делится.

    В каждой инфузории образуются четыре дочерних ядра|ядра. Три из них разрушаются, а четвёртое снова делится. В результате в каждой остаётся по два ядра|ядра. По цитоплазматическому мостику происходит обмен ядрами, и там сливается с оставшимся ядром.

    Вновь образовавшиеся ядра|ядра формируют большое и малое ядра|ядра, и инфузории расходятся. Такой половой|половой процесс называется конъюгацией. Он длится около 12 часов.

    Половой|Половой процесс ведёт к обновлению, обмену между особями и перераспределению наследственного (генетического) материала, что увеличивает жизнестойкость организмов.

    Питание инфузории туфельки

    Простейшие одноклеточные организмы, относящиеся к классу реснитчатых распространены практически повсеместно.

    От холодных льдов Севера до не менее обжигающих айсбергов Юга|Юга в любой|любой стоячей воде обнаруживаются эти милые создания, являющиеся одним из важнейших звеньев пищевой цепочки биоценоза.

    Для аквариумиста инфузории туфельки представляют ценность как хорошая кормовая подпитка для новорождённых мальков. Но прежде чем заводить в своём «подводном мире» эту живность, стоит|стоит познакомиться с размножением, питанием и жизнедеятельностью микроорганизма.

    Природная среда обитания и не только

    Мельчайшие из живых существ обитают в неглубоких водоёмах с неподвижной водой. Инфузории туфельки называются так за сходство формы тельца|тельца, сплошь покрытого ресничками, с дамской туфлей. Реснички помогают животным двигаться, питаться и даже обороняться.

    Мельчайший организм имеет размер 0,5 мм, увидеть невооружённым глазом инфузорию невозможно! Интересен способ перемещения в воде – только округлым затупленным концом вперёд, но и при такой своеобразной «ходьбе», малышки|малышки развивают скорость 2,5 мм/1секнду.

    Одноклеточные создания имеют двуядерную структуру: первое «большое» ядро контролирует питательные и дыхательные процессы, следит за обменом веществ и перемещением, а вот «малое» ядро включается только в процессы полового значения.

    Тончайшая оболочка повышенной эластичности позволяет микроорганизму находиться в природной чётко очерченной форме, а также быстро передвигаться|передвигаться. Как таковое передвижение осуществляется посредством ресничек, исполняющих роль «весел|вёсел» и постоянно толкающих туфельку вперёд.

    Кстати, движения всех ресничек абсолютно синхронны и согласованны.

    Жизнедеятельность: питание, дыхание, размножение

    Как и все свободно живущие микроорганизмы, инфузория туфелька питается мельчайшими бактериями и частичками водорослей. У такой крохи имеется ротовая полость – глубокая впадинка, расположенная в определённом месте тела|тела.

    Ротовое отверстие переходит в глотку|глотку, а потом пища|пища попадает|попадает прямиком в вакуоль для переваривания пищи|пищи и тут еда начинает перерабатываться кислой, а затем и щелочной средой.

    У микроорганизма есть и отверстие, через которое выходят не полностью переваренные остатки пищи|пищи. Располагается оно позади пищевого отверстия и, проходя через структуру особого типа – порошицу, остатки еды выталкиваются наружу.

    Питание микроорганизма отлажено до предела, туфелька не может переесть или остаться голодной. Это, пожалуй, одно из совершенных|совершённых созданий природы.

    Дышит инфузория туфелька всеми покровами|покровами своего тельца|тельца. Высвобожденной энергии хватает для жизнеобеспечения всех процессов, а ненужные отработанные соединения, типа углекислого газа, удаляются так же посредством всей площади тела|тела особи.

    Строение инфузории туфельки достаточно сложное, например, сократительные вакуоли при переполнении водой с растворенными|растворёнными органическими веществами, поднимаются к самой|самой крайней точке плазмы на тельце|тельце и выталкивают всё|все ненужное.

    Пресноводные обитатели таким образом удаляют излишки воды|воды, которая постоянно поступает внутрь из окружающего пространства.

    Микроорганизмы данного типа могут собраться большими|большими колониями к местам, где скапливается много бактерий, но крайне резко реагируют на поваренную соль – уплывают.

    Существует два типа размножения микроорганизмов:

    • Бесполое, являющееся обычным делением. Этот процесс происходит как раздел одной инфузории туфельки надвое, причём новые организмы обладают своим большим|большим и малым ядром. При этом в новую жизнь переходит только малая часть «старых» органоидов, все остальные быстро образуются заново.
    • Половое. Этот тип применяется только при появлении температурных колебаний, недостаточности пищи|пищи и других неблагоприятных условиях. Именно тогда животные могут разделиться полами и затем превратиться в цисту.
    • Именно второй вариант размножения наиболее интересен:

    • Две особи временно сливаются в одну;
    • На месте слияния образуется некий канальчик, соединяющий пару|пару;
    • Большое ядро полностью исчезает (у обоих особей|особей), а малое разделяется два раза.
    • Таким образом, каждая инфузория туфелька становится обладательницей двух ядер дочернего типа. Причём три ядра|ядра должны полностью разрушиться, а последнее снова поделиться.

      Из оставшихся двух ядер, которые снова обмениваются местами по мостику из цитоплазмы, формируется большое и малое. На этом процесс заканчивается и животные расходятся.

      Коньюгация позволяет перераспределить генетический материал между организмами, тем самым увеличивая жизненную силу и стойкость особей|особей. И теперь они снова могут спокойно делиться на две новые жизни.

    • по теме : Питание инфузории туфельки

    Источник: https://biologyinfo.ru/page/pitanie-infuzorii-tufelki/

    Вылечим любую болезнь
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: