Переносят углекислый газ от тканей к легким

Кровь

Переносят углекислый газ от тканей к легким

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками.

Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость.

Между кровью, межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь.

Система крови и ее функции

Представление о крови как системе создал Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • реулирующий нейрогуморальный аппарат.

Функции крови

Транспортная функция — заключается в транспорте различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Дыхательная функция — переносит дыхательные газы — кислород (02) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минеральными веществами, водой; переносит также питательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО2, другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении.

Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью.

Гомеостатическая функция — кровь участвует в водно-солевом обмене в организме, поддерживает стабильность ряда констант гомеостаза — рН, осмотического давления и др.; обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма.

Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Кровь — общие сведения

Кровь состоит из жидкой части — плазмы и взвешенных в ней клеток (форменных элементов): эритроцитов (красных кровяных телец), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Между плазмой и форменными элементами крови существуют определенные объемные соотношения. Установлено, что на долю форменных элементов приходится 40-45%, крови, а на долю плазмы — 55-60%.

Общее количество крови в организме взрослого человека в норме составляет 6-8 % массы тела, т.е. примерно 4,5-6 л. Объем циркулирующей крови относительно постоянен, несмотря на непрерывное всасывание воды из желудка и кишечника. Это объясняется строгим балансом между поступлением и выделением воды из организма.

Если вязкость воды принять за единицу, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови — около 5.

Вязкость крови обусловлена наличием белков и особенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутреннего трения. Вязкость увеличивается при сгущении крови, т.е.

потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови.

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей.

В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, — альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме — так называемого остаточного азота — приходится на долю мочевины.

Лекция врача-нутрициолога Аркадия Бибикова

Источник: https://happyfamily-nsp.com/krov/

Газообмен в легких и тканях — Знаешь как

Переносят углекислый газ от тканей к легким

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4% (табл. 13).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%).

Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Таблица 13

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Воздух газов (в %)
кислородуглекислый газазот
ВдыхаемыйВыдыхаемыйАльвеолярный20,9416,314,20,03 45,279,0379,780,6

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давлениеи напряжение газов

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. Переход газов из воздуха вжидкость и из жидкости ввоздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости.

Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, — смесь газов.

В этой смеси газов кислорода содержится 20,94%, углекислого газа — 0,03% и азота — 79,03%. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм, азота — 79,03% от 760 мм, т. е.

около 600 мм, углекислого газа в атмосферном воздухе мало — 0,03% от 760 мм—0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, то газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100—105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 40 мм рт. ст., поэтому в легких кислород из альвеолярного воздуха переходит в кровь.

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением. 

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в кровь и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам И. М. Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот.

Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Такие условия есть в легких. При глубоком вдохе альвеолы растягиваются и их поверхность достигает 100—150 м2. Так же велика и поверхность капилляров в легких.

Есть и достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови (табл. 14).

Таблица 14

Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови (в мм рт. ст.)

ГазПарциальное давление (напряжение)
атмосферный воздухальвеолярный воздухвенозная кровь (в капиллярах легких)артериальная кровь
Кислород Углекислый газ159 0,2—0,3100—110 4040 47102 40

Из таблицы 14 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110—40 = 70 мм рт. ст., а для углекислого газа 47—40=7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25—60 см3 кислорода в минуту. Следовательно, разность давлений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода — гемоглобин крови. Каждый грамм гемоглобина связывает 1,34 см3 кислорода. Гемоглобин обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100—110 мм рт. ст.

При этих условиях 97% гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород кровью приносится к тканям. Здесь парциальное давление кислорода низкое и оксигемоглобин — соединение непрочное — высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа.

Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких.

Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом.

Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар «Зенит», на борту которого находились три воздухоплавателя, достиг высоты 8000 м.

 Когда шар приземлился, то в живых остался только один человек. Причиной гибели людей было резкое снижение величины парциального давления кислорода на большой высоте.

На больших высотах (7—8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток кислорода, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м, как правило, требует пользования специальными кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется дыхание, увеличивается количество эритроцитов в крови за счет усиленного образования их в кроветворных органах и поступления из депо крови.

Кроме того, усиливаются сердечные сокращения, что приводит к увеличению минутного объема крови. Для тренировки широко применяют барокамеры. Углекислый газ переносится кровью в виде химических соединений— бикарбонатов натрия и калия.

Связывание углекислого газа и отдача его кровью зависят от его напряжения в тканях и крови.

Кроме того, в переносе углекислого газа участвует гемоглобин крови. В капиллярах тканей гемоглобин вступает в химическое соединение с углекислым газом. В легких это соединение распадается с освобождением углекислого газа. Около 25—30% выделяемого в легких углекислого газа переносится гемоглобином.

Статья на тему Газообмен в легких и тканях

Источник: https://znaesh-kak.com/m/a/%D0%B3%D0%B0%D0%B7%D0%BE%D0%BE%D0%B1%D0%BC%D0%B5%D0%BD-%D0%B2-%D0%BB%D0%B5%D0%B3%D0%BA%D0%B8%D1%85-%D0%B8-%D1%82%D0%BA%D0%B0%D0%BD%D1%8F%D1%85

Углекислый газ в организме человека: образование, транспорт кровью, влияние на здоровье

Переносят углекислый газ от тканей к легким

Из курса биологии (анатомии) школьной программы известно, что наш организм дышит кислородом (O2). Однако на уроках не рассматривается вопрос о том, какое значение имеет углекислый газ в крови для нашего здоровья? Многие не знают, что CO2 влияет на здоровье всех органов человека и регулирует биохимические процессы, протекающие в организме.

Дыхание

При изучении дыхания и образования диоксида углерода в теле человека иногда путают углекислый и угарный газы между собой. Угарный газ имеет химическую формулу CO и совершенно другие свойства.

Оксид углерода (CO), это ядовитое вещество, которое при попадании через легкие в кровь даже в минимальном количестве опасно для жизни и здоровья.

Дыхание происходит следующим образом — человек сначала выдыхает углекислоту, а потом вдыхает кислород:

  • В результате биохимических процессов при расщеплении жиров и белков в клетках происходит процесс образования углекислого газа в организме человека. Этот газ выделяется из клеток в капилляры, а затем поступает в кровь. При накоплении крови газом нервная система подает сигнал в мозг о выделении излишков двуокиси углерода за пределы нашего тела. Красные кровяные тельца (эритроциты) транспортируют молекулы углекислоты в виде химических соединений бикарбонатов и связанных с гемоглобином к альвеолам легких.
  • В альвеолах происходит обмен молекул углекислого газа на молекулы O2, которые распространяются по всему организму. Эритроциты переносят молекулы кислорода к органам и тканям, связывая его с гемоглобином, а взамен опять забирают продукт жизнедеятельности этих клеток – CO2.

Доказанным фактом считается то, что углекислота, это основатель дыхательных процессов, а не кислород, как считалось ранее. Двуокись углерода является необходимым газом для дыхания человека наравне с O2.

При выдохе человек выдыхает не только CO2, из легких уходит также избыточный O2. Рефлекс дыхания разделяется в 2 этапа:

  1. При выдыхании происходит снижение давления в легких, купол диафрагмы поднимается, легкие сжимаются, концентрация CO2 в крови повышается. Кровь движется по венам и окрашивается темный, почти черный цвет.
  2. За выдохом идет вдох. При вдохе грудная клетка расширяется, диафрагма опускается. Осуществляется отдача от гемоглобина через альвеолы в легкие и выброс в атмосферу диоксида углерода. Там же в альвеолах происходит прием гемоглобином молекулы O2. Кровь переходит на следующий круг и движется по артериям. Она окрашивается в ярко-розовый цвет.

Нормальный здоровый человек дышит ровно и регулярно. Учащенное дыхание или с задержкой, если это не вызвано большими физическими или психологическими нагрузками, считается сигналом о серьезных заболеваниях организма.

Транспорт кровью и связь с кислородом

Существует два круга кровообращения в организме: большой артериальный и малый венозный. По большому кругу транспортируется артериальная кровь, насыщенная кислородом. По малому кругу движется венозная кровь, насыщенная CO2.

Раньше существовало мнение, что с выдохом углекислый газ в организме человека не остается. Однако как показывают исследования, в артериальной крови всегда присутствует определенное количество углекислоты.

Концентрация ее небольшая, в пределах 6,0-7,0%, но если она превышает или наоборот, меньше этого количества, то для организма это плохо. Появляется либо переизбыток O2 в крови (Гипероксия), либо его недостаток (Гипоксемия). Это происходит потому, что обмен этими газами взаимосвязан.

Чтобы эритроцит мог поглотить молекулу кислорода и связать ее с гемоглобином, он должен удалить в атмосферу молекулу диоксида углерода.

Зависимость здоровья от содержания углекислоты

При физических нагрузках обменные процессы в клетках ускоряются, чтобы вывести большее количество углекислоты, человеку необходимо чаще и глубже дышать. Процесс происходит рефлекторно.

В таких случаях опасно находится в помещении с высокой концентрацией CO2, так как вместе с O2 человек вдыхает двуокись углерода. Это приводит к повышению ее концентрации в крови, а дальше к приступам удушья.

Появляются головокружение, тошнота, вялость, учащается сердцебиение и дыхание (Гиперкапния).

Изучая процессы дыхания и газообмена в организме человека, ученые пришли к выводу, что опасен для здоровья не столько недостаток кислорода, сколько избыток диоксида углерода в воздухе.

Газ CO2 не является сильнодействующим отравляющим веществом, но так как гемоглобин занятый углекислым газом не принимает кислород, то происходит эффект удушения, вплоть до летального исхода.

Высокая концентрация этого вещества в крови приводит к гибели эритроцитов и воспалению стенок кровеносных сосудов. Так происходит если наличие углекислого газа в воздухе более 3 %. При таком уровне человек чувствует себя слабым, его тянет на сон. При концентрации 5% проявляется удушающий эффект, головные боли, головокружение.

Желудочно-кишечный тракт

Углекислый газ в организм попадает не только при дыхании, но и вместе с пищей. Углерод содержится практически во всех органических веществах, наибольшая концентрация содержится в продуктах растительного происхождения. Больше всего его образуется при расщеплении легкоусвояемых углеводов.

Углекислота влияет на химический состав жидкости в теле человека, хотя и не так значительно, но при сильном понижении или превышении может оказывать губительное воздействие.

В организме почти все процессы жизнедеятельности клеток происходят при определенном уровне кислотно-щелочного баланса, который скорее близок к нейтральной воде, чем к кислоте. Наличие повышенной концентрации CO2 в употребляемых продуктах сильно меняет состав жидкости в теле человека.

Это также влияет на протекание биохимических процессов. Происходит нарушение обмена веществ, гибель клеток или неправильный процесс их деления, что очень опасно.

Продукты и их кислотно-щелочной баланс

Поэтому продукты, содержащие CO2 в свободном состоянии (газировка) во многих странах запрещены к продаже.

Наибольший вред они наносят организму:

  • При любых заболеваниях желудочно-кишечного тракта, в том числе хронических. Так как при приеме в пищу таких продуктов, происходит раздражение слизистой желудка. Они стимулируют выработку ферментов и повышают кислотность желудочного сока, что приводит к обострению имеющихся воспалительных процессов, образованию или углублению язвочек.
  • Детям, до трех лет не стоит давать такие продукты, потому что их организм еще не совсем сформировался. Поэтому углекислота может привести к нарушению обмена веществ в организме и в будущем стать причиной высокой хрупкости костей.
  • Диоксид углерода может вызвать аллергическую реакцию у человека.
  • При наличии лишнего веса нельзя употреблять такие продукты, так как полнота, это следствие нарушения обмена веществ. А употребление продуктов с высоким содержанием CO2 приведет только к усугублению ситуации.

Во многих западных странах принят закон, в соответствии с которым наличие углекислого газа в продуктах не должно превышать 0,4%. Исключение дается только простой минеральной воде с газом, но только в том случае, если она содержит незначительное количество диоксида углерода. Но и это допустимо только по разрешению или рекомендации врача, особенно при болезнях желудка.

Красота и здоровье

Однако CO2 имеет и положительно действие на организм человека. Так диоксид углерода является очень мощным обеззараживающим средством. Его используют в медицине и косметологии.

Применяют углекислый газ совместно с другими компонентами, наружно, а также производят инъекции (Карбокси-терапия).

Крем или гель, содержащий углекислоту, хорошо обеззараживает и очищает кожу, а непосредственное введение его во внутренние ткани тела помогает бороться с целлюлитом.

Источник: https://UglekislyGaz.ru/dioksid-ugleroda/co2-i-organizm-cheloveka/

Основные функции белков в клетке

Переносят углекислый газ от тканей к легким

Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом.

Белок — это отдельный полипептид или агрегат нескольких полипептидов, выполняющий биологическую функцию.

Полипептид — понятие химическое. Белок — понятие биологическое.

В биологии функции белков можно разделить на следующие виды:

1. Строительная функция

Белки участвуют в образовании клеточных и внеклеточных структур. Например:

  • кератин – из него состоят волосы, ногти, перья, копыта
  • коллаген – главный компонент хрящей и сухожилий;
  • эластин (связки);
  • белки клеточных мембран (в основном – гликопротеиды)

2. Транспортная функция

Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например:

  • липопротеины — отвечает за перенос жира.
  • гемоглобин — транспорт кислорода, белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ;
  • гаптоглобин — транспорт гема),
  • трансферрин — транспорт железа.

Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

В состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно. Транспорт веществ через мембраны осуществляют белки – Na+,К+-АТФаза (антинаправленный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки), глюкозные транспортеры.

3. Регуляторная функция

Большая группа белков организма принимает участие в регуляции процессов обмена веществ. Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например:

  • гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена.

4. Защитная функция

  • В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их.
  • Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

5. Двигательная функция

  • Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных, движений листьев у растений, мерцание ресничек у простейших и т.д.

6. Сигнальная функция

  • В поверхностную мембрану клетки встроены молекулы белков (рецепторы), способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.

7. Запасающая функция

  • В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. У животных и человека при длительном голодании используются белки мышц, эпителиальных тканей и печени.
  • Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.

8. Энергетическая функция

  • При распаде 1г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака.

    Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы (по словам одного из биохимиков: использовать белки для получения энергии – все равно, что топить печь долларовыми купюрами).

9. Каталитическая (ферментативная) функция

  • Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках.

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью.

Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты можно разделить на две группы:

  1. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот.
  2. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины.

10. Функция антифириза

  • В плазме крови некоторых живых организмов содержатся белки которые предупреждают ее замерзание в условиях низких температур.

11. Питательная (резервная) функция

  • Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию.

    Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Решай задания и варианты по биологии с ответами

Источник: https://bingoschool.ru/blog/41/

Вылечим любую болезнь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: